版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆浙江省杭州拱墅區(qū)四校聯(lián)考初三3月第二次周考數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,等腰△ABC中,AB=AC=10,BC=6,直線MN垂直平分AB交AC于D,連接BD,則△BCD的周長等于()A.13 B.14 C.15 D.162.如圖是由5個大小相同的正方體組成的幾何體,則該幾何體的左視圖是()A. B.C. D.3.若關于x的方程=3的解為正數(shù),則m的取值范圍是()A.m< B.m<且m≠C.m>﹣ D.m>﹣且m≠﹣4.下列計算正確的是()A. B.(﹣a2)3=a6 C. D.6a2×2a=12a35.如圖,AB為⊙O的直徑,C,D為⊙O上的兩點,若AB=14,BC=1.則∠BDC的度數(shù)是()A.15° B.30° C.45° D.60°6.安徽省在一次精準扶貧工作中,共投入資金4670000元,將4670000用科學記數(shù)法表示為()A.4.67×107 B.4.67×106 C.46.7×105 D.0.467×1077.cos60°的值等于()A.1 B. C. D.8.如圖,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于點E,點D為AB的中點,連接DE,則△BDE的周長是()A.3 B.4 C.5 D.69.如圖,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以點C為圓心,CB長為半徑作弧,交AB于點D;再分別以點B和點D為圓心,大于BD的長為半徑作弧,兩弧相交于點E,作射線CE交AB于點F,則AF的長為()A.5 B.6 C.7 D.810.如圖,已知,為反比例函數(shù)圖象上的兩點,動點在軸正半軸上運動,當線段與線段之差達到最大時,點的坐標是()A. B. C. D.11.已知M=9x2-4x+3,N=5x2+4x-2,則M與N的大小關系是()A.M>N B.M=N C.M<N D.不能確定12.若關于x的方程是一元二次方程,則m的取值范圍是()A.. B.. C. D..二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在矩形ABCD中,AB=4,AD=3,矩形內部有一動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點的距離之和PA+PB的最小值為______.14.觀察下列一組數(shù),,,,,…探究規(guī)律,第n個數(shù)是_____.15.關于的一元二次方程有兩個相等的實數(shù)根,則________.16.在△ABC中,∠C=30°,∠A﹣∠B=30°,則∠A=_____.17.一個正四邊形的內切圓半徑與外接圓半徑之比為:_________________18.若一次函數(shù)y=-2x+b(b為常數(shù))的圖象經(jīng)過第二、三、四象限,則b的值可以是_________.(寫出一個即可)三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)目前“微信”、“支付寶”、“共享單車”和“網(wǎng)購”給我們的生活帶來了很多便利,初二數(shù)學小組在校內對“你最認可的四大新生事物”進行調查,隨機調查了m人(每名學生必選一種且只能從這四種中選擇一種)并將調查結果繪制成如下不完整的統(tǒng)計圖.根據(jù)圖中信息求出m=,n=;請你幫助他們將這兩個統(tǒng)計圖補全;根據(jù)抽樣調查的結果,請估算全校2000名學生中,大約有多少人最認可“微信”這一新生事物?已知A、B兩位同學都最認可“微信”,C同學最認可“支付寶”D同學最認可“網(wǎng)購”從這四名同學中抽取兩名同學,請你通過樹狀圖或表格,求出這兩位同學最認可的新生事物不一樣的概率.20.(6分)計算:÷–+2018021.(6分)在一次數(shù)學活動課上,老師讓同學們到操場上測量旗桿的高度,然后回來交流各自的測量方法.小芳的測量方法是:拿一根高3.5米的竹竿直立在離旗桿27米的C處(如圖),然后沿BC方向走到D處,這時目測旗桿頂部A與竹竿頂部E恰好在同一直線上,又測得C、D兩點的距離為3米,小芳的目高為1.5米,這樣便可知道旗桿的高.你認為這種測量方法是否可行?請說明理由.22.(8分)如圖,點C在線段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求證:CF⊥DE于點F.23.(8分)(1)問題:如圖1,在四邊形ABCD中,點P為AB上一點,∠DPC=∠A=∠B=90°.求證:AD·BC=AP·BP.(2)探究:如圖2,在四邊形ABCD中,點P為AB上一點,當∠DPC=∠A=∠B=θ時,上述結論是否依然成立.說明理由.(3)應用:請利用(1)(2)獲得的經(jīng)驗解決問題:如圖3,在△ABD中,AB=6,AD=BD=1.點P以每秒1個單位長度的速度,由點A出發(fā),沿邊AB向點B運動,且滿足∠DPC=∠A.設點P的運動時間為t(秒),當DC的長與△ABD底邊上的高相等時,求t的值.24.(10分)如圖,A(4,3)是反比例函數(shù)y=在第一象限圖象上一點,連接OA,過A作AB∥x軸,截取AB=OA(B在A右側),連接OB,交反比例函數(shù)y=的圖象于點P.求反比例函數(shù)y=的表達式;求點B的坐標;求△OAP的面積.25.(10分)如圖,在菱形ABCD中,點P在對角線AC上,且PA=PD,⊙O是△PAD的外接圓.(1)求證:AB是⊙O的切線;(2)若AC=8,tan∠BAC=,求⊙O的半徑.26.(12分)如圖,平面直角坐標系xOy中,已知點A(0,3),點B(,0),連接AB,若對于平面內一點C,當△ABC是以AB為腰的等腰三角形時,稱點C是線段AB的“等長點”.(1)在點C1(﹣2,3+2),點C2(0,﹣2),點C3(3+,﹣)中,線段AB的“等長點”是點________;(2)若點D(m,n)是線段AB的“等長點”,且∠DAB=60°,求點D的坐標;(3)若直線y=kx+3k上至少存在一個線段AB的“等長點”,求k的取值范圍.27.(12分)一個不透明的袋子中裝有3個標號分別為1、2、3的完全相同的小球,隨機地摸出一個小球不放回,再隨機地摸出一個小球.采用樹狀圖或列表法列出兩次摸出小球出現(xiàn)的所有可能結果;求摸出的兩個小球號碼之和等于4的概率.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
由AB的垂直平分MN交AC于D,根據(jù)線段垂直平分線的性質,即可求得AD=BD,又由△CDB的周長為:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.【詳解】解:∵MN是線段AB的垂直平分線,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周長=AC+BC=10+6=16,故選D.此題考查了線段垂直平分線的性質,比較簡單,注意數(shù)形結合思想與轉化思想的應用.2、B【解析】
找到從左面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在主視圖中.【詳解】解:從左面看易得下面一層有2個正方形,上面一層左邊有1個正方形.故選:B.本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.3、B【解析】
解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=,已知關于x的方程=3的解為正數(shù),所以﹣2m+9>0,解得m<,當x=3時,x==3,解得:m=,所以m的取值范圍是:m<且m≠.故答案選B.4、D【解析】
根據(jù)平方根的運算法則和冪的運算法則進行計算,選出正確答案.【詳解】,A選項錯誤;(﹣a2)3=-a6,B錯誤;,C錯誤;.6a2×2a=12a3,D正確;故選:D.本題考查學生對平方根及冪運算的能力的考查,熟練掌握平方根運算和冪運算法則是解答本題的關鍵.5、B【解析】
只要證明△OCB是等邊三角形,可得∠CDB=∠COB即可解決問題.【詳解】如圖,連接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等邊三角形,∴∠COB=60°,∴∠CDB=∠COB=30°,故選B.本題考查圓周角定理,等邊三角形的判定等知識,解題的關鍵是學會利用數(shù)形結合的首先解決問題,屬于中考??碱}型.6、B【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將4670000用科學記數(shù)法表示為4.67×106,故選B.本題考查了科學記數(shù)法—表示較大的數(shù),解題的關鍵是掌握科學記數(shù)法的概念進行解答.7、A【解析】
根據(jù)特殊角的三角函數(shù)值直接得出結果.【詳解】解:cos60°=故選A.識記特殊角的三角函數(shù)值是解題的關鍵.8、C【解析】
根據(jù)等腰三角形的性質可得BE=BC=2,再根據(jù)三角形中位線定理可求得BD、DE長,根據(jù)三角形周長公式即可求得答案.【詳解】解:∵在△ABC中,AB=AC=3,AE平分∠BAC,∴BE=CE=BC=2,又∵D是AB中點,∴BD=AB=,∴DE是△ABC的中位線,∴DE=AC=,∴△BDE的周長為BD+DE+BE=++2=5,故選C.本題考查了等腰三角形的性質、三角形中位線定理,熟練掌握三角形中位線定理是解題的關鍵.9、B【解析】試題分析:連接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是線段BD的垂直平分線,∴CD是斜邊AB的中線,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故選B.考點:作圖—基本作圖;含30度角的直角三角形.10、D【解析】
求出AB的坐標,設直線AB的解析式是y=kx+b,把A、B的坐標代入求出直線AB的解析式,根據(jù)三角形的三邊關系定理得出在△ABP中,|AP-BP|<AB,延長AB交x軸于P′,當P在P′點時,PA-PB=AB,此時線段AP與線段BP之差達到最大,求出直線AB于x軸的交點坐標即可.【詳解】把,代入反比例函數(shù),得:,,,在中,由三角形的三邊關系定理得:,延長交軸于,當在點時,,即此時線段與線段之差達到最大,設直線的解析式是,把,的坐標代入得:,解得:,直線的解析式是,當時,,即,故選D.本題考查了三角形的三邊關系定理和用待定系數(shù)法求一次函數(shù)的解析式的應用,解此題的關鍵是確定P點的位置,題目比較好,但有一定的難度.11、A【解析】
若比較M,N的大小關系,只需計算M-N的值即可.【詳解】解:∵M=9x2-4x+3,N=5x2+4x-2,∴M-N=(9x2-4x+3)-(5x2+4x-2)=4(x-1)2+1>0,∴M>N.故選A.本題的主要考查了比較代數(shù)式的大小,可以讓兩者相減再分析情況.12、A【解析】
根據(jù)一元二次方程的定義可得m﹣1≠0,再解即可.【詳解】由題意得:m﹣1≠0,解得:m≠1,故選A.此題主要考查了一元二次方程的定義,關鍵是掌握只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、4【解析】分析:首先由S△PAB=S矩形ABCD,得出動點P在與AB平行且與AB的距離是2的直線l上,作A關于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.詳解:設△ABP中AB邊上的高是h.∵S△PAB=S矩形ABCD,∴AB?h=AB?AD,∴h=AD=2,∴動點P在與AB平行且與AB的距離是2的直線l上,如圖,作A關于直線l的對稱點E,連接AE,連接BE,則BE的長就是所求的最短距離.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值為4.故答案為4.點睛:本題考查了軸對稱-最短路線問題,三角形的面積,矩形的性質,勾股定理,兩點之間線段最短的性質.得出動點P所在的位置是解題的關鍵.14、【解析】
根據(jù)已知得出數(shù)字分母與分子的變化規(guī)律,分子是連續(xù)的正整數(shù),分母是連續(xù)的奇數(shù),進而得出第n個數(shù)分子的規(guī)律是n,分母的規(guī)律是2n+1,進而得出這一組數(shù)的第n個數(shù)的值.【詳解】解:因為分子的規(guī)律是連續(xù)的正整數(shù),分母的規(guī)律是2n+1,
所以第n個數(shù)就應該是:,
故答案為.此題主要考查了數(shù)字變化規(guī)律,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.解題的關鍵是把數(shù)據(jù)的分子分母分別用組數(shù)n表示出來.15、-1.【解析】
根據(jù)根的判別式計算即可.【詳解】解:依題意得:∵關于的一元二次方程有兩個相等的實數(shù)根,∴==4-41(-k)=4+4k=0解得,k=-1.故答案為:-1.本題考查了一元二次方程根的判別式,當=>0時,方程有兩個不相等的實數(shù)根;當==0時,方程有兩個相等的實數(shù)根;當=<0時,方程無實數(shù)根.16、90°.【解析】
根據(jù)三角形內角和得到∠A+∠B+∠C=180°,而∠C=30°,則可計算出∠A+∠B+=150°,由于∠A﹣∠B=30°,把兩式相加消去∠B即可求得∠A的度數(shù).【詳解】解:∵∠A+∠B+∠C=180°,∠C=30°,∴∠A+∠B+=150°,∵∠A﹣∠B=30°,∴2∠A=180°,∴∠A=90°.故答案為:90°.本題考查了三角形內角和定理:三角形內角和是180°.主要用在求三角形中角的度數(shù).①直接根據(jù)兩已知角求第三個角;②依據(jù)三角形中角的關系,用代數(shù)方法求三個角;③在直角三角形中,已知一銳角可利用兩銳角互余求另一銳角.17、2【解析】
如圖,正方形ABCD為⊙O的內接四邊形,作OH⊥AB于H,利用正方形的性質得到OH為正方形ABCD的內切圓的半徑,∠OAB=45°,然后利用等腰直角三角形的性質得OA=2OH即可解答.【詳解】解:如圖,正方形ABCD為⊙O的內接四邊形,作OH⊥AB于H,則OH為正方形ABCD的內切圓的半徑,∵∠OAB=45°,∴OA=2OH,∴OHOA即一個正四邊形的內切圓半徑與外接圓半徑之比為22故答案為:22本題考查了正多邊形與圓的關系:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內接正多邊形,這個圓叫做這個正多邊形的外接圓.理解正多邊形的有關概念.18、-1【解析】試題分析:根據(jù)一次函數(shù)的圖象經(jīng)過第二、三、四象限,可以得出k<1,b<1,隨便寫出一個小于1的b值即可.∵一次函數(shù)y=﹣2x+b(b為常數(shù))的圖象經(jīng)過第二、三、四象限,∴k<1,b<1.考點:一次函數(shù)圖象與系數(shù)的關系三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)100、35;(2)補圖見解析;(3)800人;(4)【解析】分析:(1)由共享單車人數(shù)及其百分比求得總人數(shù)m,用支付寶人數(shù)除以總人數(shù)可得其百分比n的值;(2)總人數(shù)乘以網(wǎng)購人數(shù)的百分比可得其人數(shù),用微信人數(shù)除以總人數(shù)求得其百分比即可補全兩個圖形;(3)總人數(shù)乘以樣本中微信人數(shù)所占百分比可得答案;(4)列表得出所有等可能結果,從中找到這兩位同學最認可的新生事物不一樣的結果數(shù),根據(jù)概率公式計算可得.詳解:(1)∵被調查的總人數(shù)m=10÷10%=100人,∴支付寶的人數(shù)所占百分比n%=×100%=35%,即n=35,(2)網(wǎng)購人數(shù)為100×15%=15人,微信對應的百分比為×100%=40%,補全圖形如下:(3)估算全校2000名學生中,最認可“微信”這一新生事物的人數(shù)為2000×40%=800人;(4)列表如下:共有12種情況,這兩位同學最認可的新生事物不一樣的有10種,所以這兩位同學最認可的新生事物不一樣的概率為.點睛:本題考查的是用列表法或畫樹狀圖法求概率以及扇形統(tǒng)計圖與條形統(tǒng)計圖的知識.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、2【解析】
根據(jù)實數(shù)的混合運算法則進行計算.【詳解】解:原式=-(-1)+1=-+1+1=2此題重點考察學生對實數(shù)的混合運算的應用,熟練掌握計算方法是解題的關鍵.21、這種測量方法可行,旗桿的高為21.1米.【解析】分析:根據(jù)已知得出過F作FG⊥AB于G,交CE于H,利用相似三角形的判定得出△AGF∽△EHF,再利用相似三角形的性質得出即可.詳解:這種測量方法可行.理由如下:設旗桿高AB=x.過F作FG⊥AB于G,交CE于H(如圖).所以△AGF∽△EHF.因為FD=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x﹣1.1.由△AGF∽△EHF,得,即,所以x﹣1.1=20,解得x=21.1(米)答:旗桿的高為21.1米.點睛:此題主要考查了相似三角形的判定與性質,根據(jù)已知得出△AGF∽△EHF是解題關鍵.22、證明見解析.【解析】
根據(jù)平行線性質得出∠A=∠B,根據(jù)SAS證△ACD≌△BEC,推出DC=CE,根據(jù)等腰三角形的三線合一定理推出即可.【詳解】∵AD∥BE,∴∠A=∠B.在△ACD和△BEC中∵,∴△ACD≌△BEC(SAS),∴DC=CE.∵CF平分∠DCE,∴CF⊥DE(三線合一).本題考查了全等三角形的性質和判定,平行線的性質,等腰三角形的性質等知識點,關鍵是求出DC=CE,主要考查了學生運用定理進行推理的能力.23、(2)證明見解析;(2)結論成立,理由見解析;(3)2秒或2秒.【解析】
(2)由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運用相似三角形的性質即可解決問題;(2)由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運用相似三角形的性質即可解決問題;(3)過點D作DE⊥AB于點E,根據(jù)等腰三角形的性質可得AE=BE=3,根據(jù)勾股定理可得DE=4,由題可得DC=DE=4,則有BC=2-4=2.易證∠DPC=∠A=∠B.根據(jù)ADBC=APBP,就可求出t的值.【詳解】解:(2)如圖2,∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠APD=∠BPC,∴△ADP∽△BPC,∴,∴ADBC=APBP;(2)結論ADBC=APBP仍成立;證明:如圖2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠APD,∴∠DPC+∠BPC=∠A+∠APD,∵∠DPC=∠A=θ,∴∠BPC=∠APD,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴,∴ADBC=APBP;(3)如下圖,過點D作DE⊥AB于點E,∵AD=BD=2,AB=6,∴AE=BE=3∴DE==4,∵以D為圓心,以DC為半徑的圓與AB相切,∴DC=DE=4,∴BC=2-4=2,∵AD=BD,∴∠A=∠B,又∵∠DPC=∠A,∴∠DPC=∠A=∠B,由(2)(2)的經(jīng)驗得AD?BC=AP?BP,又∵AP=t,BP=6-t,∴t(6-t)=2×2,∴t=2或t=2,∴t的值為2秒或2秒.本題考查圓的綜合題.24、(1)反比例函數(shù)解析式為y=;(2)點B的坐標為(9,3);(3)△OAP的面積=1.【解析】
(1)將點A的坐標代入解析式求解可得;(2)利用勾股定理求得AB=OA=1,由AB∥x軸即可得點B的坐標;(3)先根據(jù)點B坐標得出OB所在直線解析式,從而求得直線與雙曲線交點P的坐標,再利用割補法求解可得.【詳解】(1)將點A(4,3)代入y=,得:k=12,則反比例函數(shù)解析式為y=;(2)如圖,過點A作AC⊥x軸于點C,則OC=4、AC=3,∴OA==1,∵AB∥x軸,且AB=OA=1,∴點B的坐標為(9,3);(3)∵點B坐標為(9,3),∴OB所在直線解析式為y=x,由可得點P坐標為(6,2),(負值舍去),過點P作PD⊥x軸,延長DP交AB于點E,則點E坐標為(6,3),∴AE=2、PE=1、PD=2,則△OAP的面積=×(2+6)×3﹣×6×2﹣×2×1=1.本題考查了反比例函數(shù)與幾何圖形綜合,熟練掌握反比例函數(shù)圖象上點的坐標特征、正確添加輔助線是解題的關鍵.25、(1)見解析;(2).【解析】分析:(1)連結OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根據(jù)垂徑定理的推理得OP⊥AD,AE=DE,則∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根據(jù)菱形的性質得∠1=∠2,所以∠2+∠OAP=90°,然后根據(jù)切線的判定定理得到直線AB與⊙O相切;(2)連結BD,交AC于點F,根據(jù)菱形的性質得DB與AC互相垂直平分,則AF=4,tan∠DAC=,得到DF=2,根據(jù)勾股定理得到AD==2,求得AE=,設⊙O的半徑為R,則OE=R﹣,OA=R,根據(jù)勾股定理列方程即可得到結論.詳解:(1)連結OP、OA,OP交AD于E,如圖,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.∵四邊形ABCD為菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直線AB與⊙O相切;(2)連結BD,交AC于點F,如圖,∵四邊形ABCD為菱形,∴DB與AC互相垂直平分.∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,∴DF=2,∴AD==2,∴AE=.在Rt△PAE中,tan∠1==,∴PE=.設⊙O的半徑為R,則OE=R﹣,OA=R.在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,∴R=,即⊙O的半徑為.點睛:本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了菱形的性質和銳角三角函數(shù)以及勾股定理.26、(1)C1,C3;(2)D(﹣,0)或D(,3);(3)﹣≤k≤【解析】
(1)直接利用線段AB的“等長點”的條件
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安慶2025年安徽安慶大觀經(jīng)濟開發(fā)區(qū)招聘工作人員筆試歷年參考題庫附帶答案詳解
- 臺州2025年浙江臺州臨海市第七中學選聘教師(二)筆試歷年參考題庫附帶答案詳解
- 南京2025年江蘇南京市特種設備安全監(jiān)督檢驗研究院招聘高層次人才筆試歷年參考題庫附帶答案詳解
- 保定2025年河北保定阜平縣事業(yè)單位招聘73人筆試歷年參考題庫附帶答案詳解
- 智研咨詢重磅發(fā)布:中國人工智能+醫(yī)療影像行業(yè)供需態(tài)勢、市場現(xiàn)狀及發(fā)展前景預測報告
- 耳鼻喉科團隊急癥模擬中的領導力培養(yǎng)策略
- 企業(yè)包保制度
- 倉庫安檢制度
- 武裝部內務衛(wèi)生管理制度
- 制藥廠車間衛(wèi)生制度
- 2025新疆能源(集團)有限責任公司共享中心招聘備考題庫(2人)帶答案詳解(完整版)
- 2025至2030中國超純水(UPW)系統(tǒng)行業(yè)項目調研及市場前景預測評估報告
- T∕CAMH 00002-2025 心理咨詢師職業(yè)能力水平評價標準
- 2025年小學蔬菜頒獎典禮
- DB4114∕T 250-2024 農(nóng)民田間學校建設管理規(guī)范
- 急診科胸部創(chuàng)傷救治指南
- 二手手機計劃書項目方案
- 十年(2016-2025年)高考數(shù)學真題分類匯編:專題10 數(shù)列解答題綜合一(原卷版)
- 醫(yī)院保潔人員安全管理與保障制度
- 工業(yè)園區(qū)規(guī)劃(環(huán)境影響評價、水資源論證、安全風險評估等)方案咨詢服務投標文件(技術標)
- 2024低溫低濁水給水處理設計標準
評論
0/150
提交評論