難點(diǎn)解析-貴州省清鎮(zhèn)市中考數(shù)學(xué)真題分類(勾股定理)匯編必考點(diǎn)解析試題(含詳細(xì)解析)_第1頁
難點(diǎn)解析-貴州省清鎮(zhèn)市中考數(shù)學(xué)真題分類(勾股定理)匯編必考點(diǎn)解析試題(含詳細(xì)解析)_第2頁
難點(diǎn)解析-貴州省清鎮(zhèn)市中考數(shù)學(xué)真題分類(勾股定理)匯編必考點(diǎn)解析試題(含詳細(xì)解析)_第3頁
難點(diǎn)解析-貴州省清鎮(zhèn)市中考數(shù)學(xué)真題分類(勾股定理)匯編必考點(diǎn)解析試題(含詳細(xì)解析)_第4頁
難點(diǎn)解析-貴州省清鎮(zhèn)市中考數(shù)學(xué)真題分類(勾股定理)匯編必考點(diǎn)解析試題(含詳細(xì)解析)_第5頁
已閱讀5頁,還剩27頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

貴州省清鎮(zhèn)市中考數(shù)學(xué)真題分類(勾股定理)匯編必考點(diǎn)解析考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題14分)一、單選題(7小題,每小題2分,共計(jì)14分)1、如圖,已知點(diǎn)E在正方形ABCD內(nèi),滿足∠AEB=90°,AE=6,BE=8,則陰影部分的面積是()A.48 B.60C.76 D.802、如圖,所有陰影四邊形都是正方形,所有三角形都是直角三角形,已知正方形A,B,C的面積依次為2,4,3,則正方形D的面積為()A.9 B.8 C.27 D.453、如圖,有一只小鳥從小樹頂飛到大樹頂上,它飛行的最短路程是()A.13米 B.12米 C.5米 D.米4、如圖,在中,,cm,cm,點(diǎn)、分別在、邊上.現(xiàn)將沿翻折,使點(diǎn)落在點(diǎn)處.連接,則長度的最小值為(

)A.0 B.2 C.4 D.65、如圖,在△ABC中,AD,BE分別是BC,AC邊上的中線,且AD⊥BE,垂足為點(diǎn)F,設(shè)BC=a,AC=b,AB=c,則下列關(guān)系式中成立的是(

)A.a(chǎn)2+b2=5c2 B.a(chǎn)2+b2=4c2 C.a(chǎn)2+b2=3c2 D.a(chǎn)2+b2=2c26、如圖,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中點(diǎn),直線l經(jīng)過點(diǎn)D,AE⊥l,BF⊥l,垂足分別為E,F(xiàn),則AE+BF的最大值為()A. B.2 C.2 D.37、如圖,將直角三角形紙片沿AD折疊,使點(diǎn)B落在AC延長線上的點(diǎn)E處.若AC=3,BC=4,則圖中陰影部分的面積是()A. B. C. D.第Ⅱ卷(非選擇題86分)二、填空題(8小題,每小題2分,共計(jì)16分)1、如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,點(diǎn)D在AB上,AD=AC,AF⊥CD交CD于點(diǎn)E,交CB于點(diǎn)F,則CF的長是________________.2、如圖,在網(wǎng)格中,每個(gè)小正方形的邊長均為1.點(diǎn)A、B,C都在格點(diǎn)上,若BD是△ABC的高,則BD的長為__________.3、若△ABC中,cm,cm,高cm,則BC的長為________cm.4、把兩個(gè)同樣大小含角的三角尺按如圖所示的方式放置,其中一個(gè)三角尺的銳角頂點(diǎn)與另一個(gè)三角尺的直角頂點(diǎn)重合于點(diǎn),且另外三個(gè)銳角頂點(diǎn)在同一直線上.若,則____.5、如圖,一架長5米的梯子A1B1斜靠在墻A1C上,B1到墻底端C的距離為3米,此時(shí)梯子的高度達(dá)不到工作要求,因此把梯子的B1端向墻的方向移動(dòng)了1.6米到B處,此時(shí)梯子的高度達(dá)到工作要求,那么梯子的A1端向上移動(dòng)了_____米.6、勾股定理最早出現(xiàn)在商高的《周髀算經(jīng)》:“勾廣三,股修四,經(jīng)隅五”.觀察下列勾股數(shù):3,4,5;5,12,13;7,24,25;…,這類勾股數(shù)的特點(diǎn)是:勾為奇數(shù),弦與股相差為1,柏拉圖研究了勾為偶數(shù),弦與股相差為2的一類勾股數(shù),如:6,8,10;8,15,17;…,若此類勾股數(shù)的勾為2m(m≥3,m為正整數(shù)),則其弦是________(結(jié)果用含m的式子表示).7、如圖,矩形ABCD中,AD=6,AB=8.點(diǎn)E為邊DC上的一個(gè)動(dòng)點(diǎn),△AD'E與△ADE關(guān)于直線AE對稱,當(dāng)△CD'E為直角三角形時(shí),DE的長為__.8、有一個(gè)水池,水面是一個(gè)邊長為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池一邊的中點(diǎn),它的頂端恰好到達(dá)池邊的水面,這根蘆葦?shù)拈L度為_____尺.三、解答題(7小題,每小題10分,共計(jì)70分)1、如圖是三個(gè)全等的直角三角形紙片,且,按如圖的三種方法分別將其折疊,使折痕(圖中虛線)過其中的一個(gè)頂點(diǎn),且使該頂點(diǎn)所在角的兩邊重合,記折疊后不重疊部分面積分別為.(1)若,求的值.(2)若,求①單個(gè)直角三角形紙片的面積是多少?②此時(shí)的值是多少?2、《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,作者是我國明代數(shù)學(xué)家程大位.在《算法統(tǒng)宗》中有一道“蕩秋千”的問題:“平地秋千未起,踏板一尺離地.送行二步與人齊,五尺人高曾記.仕女佳人爭蹴,終朝笑語歡嬉.良工高士素好奇,算出索長有幾.”(注:1步=5尺)譯文:“有一架秋千,當(dāng)它靜止時(shí),踏板離地1尺,將它往前推送10尺(水平距離)時(shí),秋千的踏板就和人一樣高,這個(gè)人的身高為5尺,秋千的繩索始終拉得很直,問繩索有多長.”3、如圖,已知半徑為5的⊙M經(jīng)過x軸上一點(diǎn)C,與y軸交于A、B兩點(diǎn),連接AM、AC,AC平分∠OAM,AO+CO=6(1)判斷⊙M與x軸的位置關(guān)系,并說明理由;(2)求AB的長;(3)連接BM并延長交圓M于點(diǎn)D,連接CD,求直線CD的解析式.4、一個(gè)25米長的梯子,斜靠在一豎直的墻上,這時(shí)的距離為24米,如果梯子的頂端A沿墻下滑4米,那么梯子底端B外移多少米?5、如圖,一艘船由A港沿北偏東60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.(1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);(2)確定C港在A港的什么方向.6、點(diǎn)P到y(tǒng)軸的距離與它到點(diǎn)A(-8,2)的距離都等于13,求點(diǎn)P的坐標(biāo)。7、做4個(gè)全等的直角三角形,設(shè)它們的兩條直角邊分別為a,b,斜邊為c,再做一個(gè)邊長為c的正方形,把它們按如圖的方式拼成正方形,請用這個(gè)圖證明勾股定理.-參考答案-一、單選題1、C【解析】【詳解】解:∵∠AEB=90°,AE=6,BE=8,∴AB=∴S陰影部分=S正方形ABCD-SRt△ABE=102-=100-24=76.故選:C.2、A【解析】【分析】設(shè)正方形D的面積為x,根據(jù)圖形得出方程2+4=x-3,求出即可.【詳解】∵正方形A、B、C的面積依次為2、4、3,∴根據(jù)圖形得:2+4=x?3.解得:x=9.故選A.【考點(diǎn)】本題考查了勾股定理,根據(jù)圖形推出四個(gè)正方形的關(guān)系是解決問題的關(guān)鍵.3、A【解析】【分析】根據(jù)題意,畫出圖形,構(gòu)造直角三角形,用勾股定理求解即可.【詳解】如圖所示,過D點(diǎn)作DE⊥AB,垂足為E,∵AB=13,CD=8,又∵BE=CD,DE=BC,∴AE=AB?BE=AB?CD=13?8=5,∴在Rt△ADE中,DE=BC=12,∴∴AD=13(負(fù)值舍去),故小鳥飛行的最短路程為13m,故選A.【考點(diǎn)】考查勾股定理,畫出示意圖,數(shù)形結(jié)合是解題的關(guān)鍵.4、C【解析】【分析】當(dāng)H落在AB上,點(diǎn)D與B重合時(shí),AH長度的值最小,根據(jù)勾股定理得到AB=10cm,由折疊的性質(zhì)知,BH=BC=6cm,于是得到結(jié)論.【詳解】解:當(dāng)H落在AB上,點(diǎn)D與B重合時(shí),AH長度的值最小,∵∠C=90°,AC=8cm,BC=6cm,∴AB=10cm,由折疊的性質(zhì)知,BH=BC=6cm,∴AH=AB-BH=4cm.故選:C.【考點(diǎn)】本題考查了翻折變換(折疊問題),勾股定理,熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.5、A【解析】【詳解】設(shè)EF=x,DF=y(tǒng),根據(jù)三角形重心的性質(zhì)得AF=2y,BF=2EF=2x,利用勾股定理得到4x2+4y2=c2,4x2+y2=b2,x2+4y2=a2,然后利用加減消元法消去x、y得到a、b、c的關(guān)系.【解答】解:設(shè)EF=x,DF=y(tǒng),∵AD,BE分別是BC,AC邊上的中線,∴點(diǎn)F為△ABC的重心,AF=AC=b,BD=a,∴AF=2DF=2y,BF=2EF=2x,∵AD⊥BE,∴∠AFB=∠AFE=∠BFD=90°,在Rt△AFB中,4x2+4y2=c2,①在Rt△AEF中,4x2+y2=b2,②在Rt△BFD中,x2+4y2=a2,③②+③得5x2+5y2=(a2+b2),∴4x2+4y2=(a2+b2),④①﹣④得c2﹣(a2+b2)=0,即a2+b2=5c2.故選:A.【點(diǎn)評】本題考查了三角形的重心:重心到頂點(diǎn)的距離與重心到對邊中點(diǎn)的距離之比為2:1.也考查了勾股定理.6、A【解析】【分析】把要求的最大值的兩條線段經(jīng)過平移后形成一條線段,然后再根據(jù)垂線段最短來進(jìn)行計(jì)算即可.【詳解】解:如圖,過點(diǎn)C作CK⊥l于點(diǎn)K,過點(diǎn)A作AH⊥BC于點(diǎn)H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC=,∵點(diǎn)D為BC中點(diǎn),∴BD=CD,在△BFD與△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延長AE,過點(diǎn)C作CN⊥AE于點(diǎn)N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,當(dāng)直線l⊥AC時(shí),最大值為,綜上所述,AE+BF的最大值為.故選:A.【考點(diǎn)】本題主要考查了全等三角形的判定定理和性質(zhì)定理及平移的性質(zhì),構(gòu)建全等三角形是解答此題的關(guān)鍵.7、B【解析】【分析】由勾股定理求出AB,設(shè)CD=x,則BD=4-x,根據(jù)求出x得到CD的長,利用面積求出答案.【詳解】解:∵∠ACB=90°,∴,由折疊得AE=AB=5,DE=BD,設(shè)CD=x,則BD=4-x,在△DCE中,∠DCE=90°,CE=AE-AC=5-3=2,∵,∴,解得x=1.5,∴CD=1.5,∴圖中陰影部分的面積是,故選:B.【考點(diǎn)】此題考查了折疊的性質(zhì),勾股定理,熟記勾股定理的計(jì)算公式是解題的關(guān)鍵.二、填空題1、1.5【解析】【分析】連接DF,由勾股定理求出AB=5,由等腰三角形的性質(zhì)得出∠CAF=∠DAF,由SAS證明△ADF≌△ACF,得出CF=DF,∠ADF=∠ACF=∠BDF=90°,設(shè)CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得出方程,解方程即可.【詳解】連接DF,如圖所示:在Rt△ABC中,∠ACB=90°,AC=3,BC=4,由勾股定理求得AB=5,∵AD=AC=3,AF⊥CD,∴∠CAF=∠DAF,BD=AB-AD=2,在△ADF和△ACF中,∴△ADF≌△ACF(SAS),∴∠ADF=∠ACF=90°,CF=DF,∴∠BDF=90°,設(shè)CF=DF=x,則BF=4-x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4-x)2,解得:x=1.5;∴CF=1.5;故答案為1.5.【考點(diǎn)】本題考查了勾股定理、全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì),證明△ADF≌△ACF得到CF=DF,在Rt△BDF中利用勾股定理列方程是解決問題的關(guān)鍵.2、##【解析】【分析】根據(jù)勾股定理計(jì)算AC的長,利用面積差可得三角形ABC的面積,由三角形的面積公式即可得到結(jié)論.【詳解】】解:由勾股定理得:AC=,∵S△ABC=3×4-×1×2-×3×2-×2×4=4,∴AC?BD=4,∴×2BD=4,∴BD=,故答案為:.【考點(diǎn)】本題考查了勾股定理,三角形的面積的計(jì)算,掌握勾股定理是解題的關(guān)鍵.3、28或8##8或28【解析】【分析】高的位置不確定,應(yīng)分情況進(jìn)行討論:(1)高在內(nèi)部;(2)高在外部,依此即可求解.【詳解】解:如圖(1)cm,cm,,則,,則;如圖(2),由(1)得,,則.則的長為或.故答案為或.【考點(diǎn)】此題考查了勾股定理,本題需注意高的位置不確定,應(yīng)根據(jù)三角形的形狀分兩種情況討論.4、.【解析】【分析】如圖,先利用等腰直角三角形的性質(zhì)求出,,再利用勾股定理求出DF,即可得出結(jié)論.【詳解】如圖,過點(diǎn)作于,在中,,,,兩個(gè)同樣大小的含角的三角尺,,在中,根據(jù)勾股定理得,,,故答案為.【考點(diǎn)】此題主要考查了勾股定理,等腰直角三角形的性質(zhì),正確作出輔助線是解本題的關(guān)鍵.5、0.8【解析】【分析】梯子的長是不變的,只要利用勾股定理解出梯子滑動(dòng)前和滑動(dòng)后的所構(gòu)成的兩直角三角形,分別得出AO,A1O的長即可.【詳解】解:在Rt△ABO中,根據(jù)勾股定理知,A1O==4(m),在Rt△ABO中,由題意可得:BO=1.4(m),根據(jù)勾股定理知,AO==4.8(m),所以AA1=AO-A1O=0.8(米).故答案為0.8.【考點(diǎn)】本題考查勾股定理的應(yīng)用,解題關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.領(lǐng)會(huì)數(shù)形結(jié)合的思想的應(yīng)用.6、m2+1【解析】【分析】2m為偶數(shù),設(shè)其股是a,則弦為a+2,根據(jù)勾股定理列方程即可得到結(jié)論.【詳解】∵2m為偶數(shù),∴設(shè)其股是a,則弦為a+2,根據(jù)勾股定理得,(2m)2+a2=(a+2)2,解得a=m2-1,∴弦長為m2+1,故答案為:m2+1.【考點(diǎn)】本題考查了勾股數(shù),勾股定理,熟練掌握勾股定理是解題的關(guān)鍵.7、3或6【解析】【分析】分兩種情況分別求解,(1)當(dāng)∠CED′=90°時(shí),如圖(1),根據(jù)軸對稱的性質(zhì)得∠AED=∠AED′=45′,得DE=AD=6;(2)當(dāng)∠ED′A=90°時(shí),如圖(2),根據(jù)軸對稱的性質(zhì)得∠AD′E=∠D,AD′=AD,DE=D′E,得A、D′、C在同一直線上,根據(jù)勾股定理得AC=10,設(shè)DE=D′E=x,則EC=CD?DE=8?x,根據(jù)勾股定理得,D′E2+D′C2=EC2,代入相關(guān)的值,計(jì)算即可.【詳解】解:當(dāng)∠CED′=90°時(shí),如圖(1),∵∠CED′=90°,根據(jù)軸對稱的性質(zhì)得∠AED=∠AED′=×90°=45°,∵∠D=90°,∴△ADE是等腰直角三角形,∴DE=AD=6;(2)當(dāng)∠ED′A=90°時(shí),如圖(2),根據(jù)軸對稱的性質(zhì)得∠AD′E=∠D=90°,AD′=AD,DE=D′E,△CD′E為直角三角形,即∠CD′E=90°,∴∠AD′E+∠CD′E=180°,∴A、D′、C在同一直線上,根據(jù)勾股定理得,∴CD′=10?6=4,設(shè)DE=D′E=x,則EC=CD?DE=8?x,在Rt△D′EC中,D′E2+D′C2=EC2,即x2+16=(8?x)2,解得x=3,即DE=3;綜上所述:DE的長為3或6;故答案為:3或6.【考點(diǎn)】本題考查了矩形的性質(zhì)、勾股定理、軸對稱的性質(zhì),熟練掌握矩形的性質(zhì)、勾股定理、軸對稱的性質(zhì)的綜合應(yīng)用,分情況討論,作出圖形是解題關(guān)鍵.8、13【解析】【分析】找到題中的直角三角形,設(shè)水深為x尺,根據(jù)勾股定理解答.【詳解】解:設(shè)水深為尺,則蘆葦長為尺,根據(jù)勾股定理得:,解得:,蘆葦?shù)拈L度(尺,答:蘆葦長13尺.故答案為:13.【考點(diǎn)】本題考查正確運(yùn)用勾股定理.善于觀察題目的信息是解題以及學(xué)好數(shù)學(xué)的關(guān)鍵.三、解答題1、(1)(2)①36;②【解析】【分析】(1)設(shè)DE=CE=x,則BE=4-x,依據(jù)S△ABE=AB×DE=BE×AC,即可得到x的值,進(jìn)而得出S1的值.(2)①如圖1,依據(jù)S△ABE=AB×DE=BE×AC,即可得到DE=x,進(jìn)而得出S1=x2;如圖2,依據(jù)S△ABN=AB×HN=AN×BC,即可得到EN=x,進(jìn)而得出S2=x2,再根據(jù)S1+S2=13,即可得到x2=6,進(jìn)而得出單個(gè)直角三角形紙片的面積.②如圖3,由折疊可得,AC=CF=3x,所以BF=BC-CF=4x-3x=x,則S3=S△CMF=S△ACM,所以S3=,即可求解.(1)解:∵AC∶BC∶AB=3∶4∶5,AC=3,∴BC=4,AB=5,由折疊可得,DE=CE,∠ADE=∠C=90°,AD=AC=3,設(shè)DE=CE=x,則BE=4﹣x,∵S△ABE=AB×DE=BE×AC,∴AB×DE=BE×AC,即5x=3(4﹣x),解得x=,∴S1=BD×DE==.(2)解:由AC:BC:AB=3:4:5,可設(shè)AC=3x,BC=4x,AB=5x,①如圖1,由折疊可得,AD=AC=3x,BD=5x-3x=2x,DE=CE,∠ADE=∠C=90°,∵S△ABE=AB×DE=BE×AC,∴AB×DE=BE×AC,即5x×DE=(4x-DE)×3x,解得DE=x,∴S1=BD×DE=×2x×x=x2;如圖2,由折疊可得,BC=BH=4x,HN=CN,∴AH=x,AN=3x-HN,∵S△ABN=AB×HN=AN×BC,∴AB×HN=AN×BC,即5x×HN=(3x-HN)×4x,解得HN=x,∴S2=AH×HN=×x×x=x2,∵S1+S2=13,∴x2+x2=13,解得x2=6,∴S△ABC=×3x×4x=6x2=36.答:單個(gè)直角三角形紙片的面積是36;②如圖3,由折疊可得,AC=CF=3x,∴BF=BC-CF=4x-3x=x,∴S3=S△CMF=S△ACM,∴S3==,答:此時(shí)S3的值為.【考點(diǎn)】本題主要考查了翻折變換(折疊問題),折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.解決問題的關(guān)鍵是利用面積法求得某些線段的長度.2、尺【解析】【分析】設(shè)秋千的繩索長為x尺,根據(jù)題意可得AB=(x-4)尺,利用勾股定理可得x2=102+(x-4)2,解之即可.【詳解】解:設(shè)秋千的繩索長為x尺,根據(jù)題意可列方程為:x2=102+(x-4)2,解得:x=,∴秋千的繩索長為尺.【考點(diǎn)】此題主要考查了勾股定理的應(yīng)用,關(guān)鍵是正確理解題意,表示出AB、AC的長,掌握直角三角形中兩直角邊的平方和等于斜邊的平方.3、(1)⊙M與x軸相切,理由見解析(2)6(3)【解析】【分析】(1)連接CM,證CM⊥x即可得出結(jié)論;(2)過點(diǎn)M作MN⊥AB于N,證四邊形OCMN是矩形,得MN=OC,ON=OM=5,設(shè)AN=x,則OA=5-x,MN=OC=6-(5-x)=1+x,利用勾股定理求出x值,即可求得AN值,再由垂徑定理得AB=2AN即可求解;(3)連接BC,CM,過點(diǎn)D作DP⊥CM于P,得直角三角形BCD,由(2)知:AB=6,OA=2,OC=4,所以O(shè)B=8,C(4,0),在Rt△BOC中,∠BOC=90°,由勾股定理,求得BC=,在Rt△BCD中,∠BCD=90°,由勾股定理,即可求得CD,在Rt△CPD和在Rt△MPD中,由勾股定理,求得CP=2,PD=4,從而得出點(diǎn)D坐標(biāo),然后用待定系數(shù)法求出直線CD解析式即可.(1)解:⊙M與x軸相切,理由如下:連接CM,如圖,∵M(jìn)C=MA,∴∠MCA=∠MAC,∵AC平分∠OAM,∴∠MAC=∠OAC,∴∠MCA=∠OAC,∵∠OAC+∠ACO=90°,∴∠MCO=∠MCA+∠ACO=∠OAC+∠ACO=90°,∵M(jìn)C是⊙M的半徑,點(diǎn)C在x軸上,∴⊙M與x軸相切;(2)解:如圖,過點(diǎn)M作MN⊥AB于N,由(1)知,∠MCO=90°,∵M(jìn)N⊥AB于N,∴∠MNO=90°,AB=2AN,∵∠CON=90°,∴∠CMN=90°,∴四邊形OCMN是矩形,∴MN=OC,ON=CM=5,∵OA+OC=6,設(shè)AN=x,

∴OA=5-x,MN=OC=6-(5-x)=1+x,在Rt△MNA中,∠MNA=90°,由勾股定理,得x2+(1+x)2=52,解得:x1=3,x2=-4(不符合題意,舍去),∴AN=3,∴AB=2AN=6;(3)解:如圖,連接BC,CM,過點(diǎn)D作DP⊥CM于P,由(2)知:AB=6,OA=2,OC=4,∴OB=8,C(4,0)在Rt△BOC中,∠BOC=90°,由勾股定理,得BC=,∵BD是⊙M的直徑,∴∠BCD=90°,BD=10,在Rt△BCD中,∠BCD=90°,由勾股定理,得CD=,即CD2=20,在Rt△CPD中,由勾股定理,得PD2=CD2-CP2=20-CP2,在Rt△MPD中,由勾股定理,得PD2=MD2-MP2=MD2-(MC-CP)2=52-(5-CP)2=10CP-CP2,∴20-CP2=10CP-CP2,

∴CP=2,∴PD2=20-CP2=20-4=16,∴PD=4,即D點(diǎn)橫坐標(biāo)為OC+PD=4+4=8,∴D(8,-2),設(shè)直線CD解析式為y=kx+b,把C(4,0),D(8,-2)代入,得,解得:,∴直線CD的解析式為:.【考點(diǎn)】本題考查直線與圓相切的判定,勾股定理,圓周角定理的推論,垂徑定理,待定系數(shù)法求一次函數(shù)解析式,熟練掌握直線與圓相切的判定、待定系數(shù)法求一次函數(shù)解析式的方法是解題的關(guān)鍵.4、8米.【解析】【分析】梯子下滑4米,梯

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論