版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
滬科版9年級下冊期末試題考試時間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時間90分鐘2、答卷前,考生務必用0.5毫米黑色簽字筆將自己的姓名、班級填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個題目指定區(qū)域內相應的位置,如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無效。第I卷(選擇題16分)一、單選題(8小題,每小題2分,共計16分)1、在中,,,給出條件:①;②;③外接圓半徑為4.請在給出的3個條件中選取一個,使得BC的長唯一.可以選取的是()A.① B.② C.③ D.①或③2、如圖,四邊形ABCD內接于⊙O,若∠ADC=130°,則∠AOC的度數(shù)為()A.25° B.80° C.130° D.100°3、如圖,點P是等邊三角形ABC內一點,且PA=3,PB=4,PC=5,則∠APB的度數(shù)是().A.90° B.100° C.120° D.150°4、在一個不透明的盒子中裝有12個白球,4個黃球,這些球除顏色外都相同.若從中隨機摸出一個球,則摸出的一個球是黃球的概率為()A. B. C. D.5、擲一枚質地均勻的骰子,向上一面的點數(shù)大于2且小于5的概率是()A. B. C. D.6、如圖,點A、B、C在上,,則的度數(shù)是()A.100° B.50° C.40° D.25°7、如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點C按順時針方向旋轉到點D落在AB邊上,此時得到△EDC,斜邊DE交AC邊于點F,則圖中陰影部分的面積為()A.3 B.1 C. D.8、下列事件是確定事件的是()A.方程有實數(shù)根 B.買一張體育彩票中大獎C.拋擲一枚硬幣正面朝上 D.上海明天下雨第Ⅱ卷(非選擇題84分)二、填空題(7小題,每小題2分,共計14分)1、如圖,在平面直角坐標系內,∠OA0A1=90°,∠A1OA0=60°,以OA1為直角邊向外作Rt△OA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法進行下去,得到Rt△OA2A3,Rt△OA3A4…,若點A0的坐標是(1,0),則點A2021的橫坐標是___________.2、把一個正六邊形繞其中心旋轉,至少旋轉________度,可以與自身重合.3、過年時包了100個餃子,其中有10個餃子包有幸運果,任意挑選一個餃子,正好是包有幸運果餃子的概率是_____.4、到點的距離等于8厘米的點的軌跡是__.5、如圖,正三角形ABC的邊長為,D、E、F分別為BC,CA,AB的中點,以A,B,C三點為圓心,長為半徑作圓,圖中陰影部分面積為______.6、如圖,⊙O的半徑為2,△ABC是⊙O的內接三角形,連接OB、OC,若弦BC的長度為,則∠BAC=________度.7、點P為邊長為2的正方形ABCD內一點,是等邊三角形,點M為BC中點,N是線段BP上一動點,將線段MN繞點M順時針旋轉60°得到線段MQ,連接AQ、PQ,則的最小值為______.三、解答題(7小題,每小題0分,共計0分)1、如圖,在Rt△ABC中,∠B=90°,∠BAC的平分線AD交BC于點D,點E在AC上,以AE為直徑的⊙O經過點D.(1)求證:①BC是⊙O的切線;②;(2)若點F是劣弧AD的中點,且CE=3,試求陰影部分的面積.2、如圖,內接于,BC是的直徑,D是AC延長線上一點.(1)請用尺規(guī)完成基本作圖:作出的角平分線交于點P.(保留作圖痕跡,不寫作法)(2)在(1)所作的圖形中,過點P作,垂足為E.則PE與有怎樣的位置關系?請說明理由.3、新高考“3+1+2”是指:3,語數(shù)外三科是必考科目;1,物理、歷史兩科中任選一科;2,化學、生物、地理、政治四科中任選兩科.某同學確定選擇“物理”,但他不確定其它兩科選什么,于是他做了一個游戲:他拿來四張不透明的卡片,正面分別寫著“化學、生物、地理、政治”,再將這四張卡片背面朝上并打亂順序,然后從這四張卡片中隨機抽取兩張,請你用畫樹狀圖(或列表)的方法,求該同學抽出的兩張卡片是“化學、政治”的概率.4、在△ABC與△DEF中,∠BAC=∠EDF=90°,且AB=AC,DE=DF.(1)如圖1,若點D與A重合,AC與EF交于P,且∠CAE=30°,CE,求EP的長;(2)如圖2,若點D與C重合,EF與BC交于點M,且BM=CM,連接AE,且∠CAE=∠MCE,求證:AE+MF=CE;(3)如圖3,若點D與A重合,連接BE,且∠ABE∠ABC,連接BF,CE,當BF+CE最小時,直接出的值.5、如圖1,O為直線DE上一點,過點O在直線DE上方作射線OC,∠EOC=130°.將直角三角板AOB(∠OAB=30°)的直角頂點放在點O處,一條邊OA在射線OD上,另一邊OB在直線DE上方,將直角三角板繞點O按每秒5°的速度逆時針旋轉一周,設旋轉時間為t秒.(1)如圖2,當t=4時,∠AOC=,∠BOE=,∠BOE﹣∠AOC=;(2)當三角板旋轉至邊AB與射線OE相交時(如圖3),試猜想∠AOC與∠BOE的數(shù)量關系,并說明理由;(3)在旋轉過程中,是否存在某個時刻,使得射線OA、OC、OD中的某一條射線是另兩條射線所成夾角的角平分線?若存在,請直接寫出t的取值,若不存在,請說明理由.6、如圖,在中,,以AC為直徑的半圓交斜邊AB于點D,E為BC的中點,連結DE,CD.過點D作于點F.(1)求證:DE是的切線;(2)若,,求的半徑.7、對于平面直角坐標系xOy中的圖形M和點P給出如下定義:Q為圖形M上任意一點,若P,Q兩點間距離的最大值和最小值都存在,且最大值是最小值的2倍,則稱點P為圖形M的“二分點”.已知點N(3,0),A(1,0),,.(1)①在點A,B,C中,線段ON的“二分點”是______;②點D(a,0),若點C為線段OD的“二分點”,求a的取值范圍;(2)以點O為圓心,r為半徑畫圓,若線段AN上存在的“二分點”,直接寫出r的取值范圍.-參考答案-一、單選題1、B【分析】畫出圖形,作,交BE于點D.根據(jù)等腰直角三角形的性質和勾股定理可求出AD的長,再由AD和AC的長作比較即可判斷①②;由前面所求的AD的長和AB的長,結合該三角形外接圓的半徑長,即可判斷該外接圓的圓心可在AB上方,也可在AB下方,其與AE的交點即為C點,為兩點不唯一,可判斷其不符合題意.【詳解】如圖,,,點C在射線上.作,交BE于點D.∵,∴為等腰直角三角形,∴,∴不存在的三角形ABC,故①不符合題意;∵,,AC=8,而AC>6,∴存在的唯一三角形ABC,如圖,點C即是.∴,使得BC的長唯一成立,故②符合題意;∵,,∴存在兩個點C使的外接圓的半徑等于4,兩個外接圓圓心分別在AB的上、下兩側,如圖,點C和即為使的外接圓的半徑等于4的點.故③不符合題意.故選B.【點睛】本題考查等腰直角三角形的判定和性質,勾股定理,三角形外接圓的性質.利用數(shù)形結合的思想是解答本題的關鍵.2、D【分析】根據(jù)圓內接四邊形的性質求出∠B的度數(shù),根據(jù)圓周角定理計算即可.【詳解】解:∵四邊形ABCD內接于⊙O,∴∠B+∠ADC=180°,∵∠ADC=130°,∴∠B=50°,由圓周角定理得,∠AOC=2∠B=100°,故選:D.【點睛】本題考查的是圓內接四邊形的性質和圓周角定理,掌握圓內接四邊形的對角互補是解題的關鍵.3、D【分析】將繞點逆時針旋轉得,根據(jù)旋轉的性質得,,,則為等邊三角形,得到,,在中,,,,根據(jù)勾股定理的逆定理可得到為直角三角形,且,即可得到的度數(shù).【詳解】解:為等邊三角形,,可將繞點逆時針旋轉得,如圖,連接,,,,為等邊三角形,,,在中,,,,,為直角三角形,且,.故選:D.【點睛】本題考查了旋轉的性質、等邊三角形,解題的關鍵是掌握旋轉前后的兩個圖形全等,對應點與旋轉中心的連線段的夾角等于旋轉角,對應點到旋轉中心的距離相等.4、C【分析】根據(jù)概率的求法,找準兩點:①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】解:一個不透明的盒子中裝有12個白球,4個黃球,從中隨機摸出一個球,所有等可能的情況16種,其中摸出的一個球是黃球的情況有4種,∴隨機抽取一個球是黃球的概率是.故選C.【點睛】本題主要考查了概率公式的應用,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.得到所有符合條件的情況數(shù)是解決本題的關鍵.5、C【分析】根據(jù)骰子各面上的數(shù)字得到向上一面的點數(shù)可能是3或4,利用概率公式計算即可.【詳解】解:一枚質地均勻的骰子共有六個面,點數(shù)分別為1,2,3,4,5,6,∴點數(shù)大于2且小于5的有3或4,∴向上一面的點數(shù)大于2且小于5的概率是=,故選:C.【點睛】此題考查了求簡單事件的概率,正確掌握概率的計算公式是解題的關鍵.6、C【分析】先根據(jù)圓周角定理求出∠AOB的度數(shù),再由等腰三角形的性質即可得出結論.【詳解】∵∠ACB=50°,∴∠AOB=100°,∵OA=OB,∴∠OAB=∠OBA=40°,故選:C.【點睛】本題考查的是圓周角定理,即在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.7、D【分析】根據(jù)題意及旋轉的性質可得是等邊三角形,則,,根據(jù)含30度角的直角三角形的性質,即可求得,由勾股定理即可求得,進而求得陰影部分的面積.【詳解】解:如圖,設與相交于點,,,,旋轉,,是等邊三角形,,,,,,,,陰影部分的面積為故選D【點睛】本題考查了等邊三角形的性質,勾股定理,含30度角的直角三角形的性質,旋轉的性質,利用含30度角的直角三角形的性質是解題的關鍵.8、A【分析】隨機事件:是指在一定條件下可能發(fā)生也可能不發(fā)生的事件,根據(jù)隨機事件的分類對各個選項逐個分析,即可得到答案【詳解】解:.方程無實數(shù)根,因此“方程有實數(shù)”是不可能事件,所以選項符合題意;B.買一張體育彩票可能中大獎,有可能不中,因此是隨機事件,所以選項B不符合題意;C.拋擲一枚硬幣,可能正面朝上,有可能反面朝上,因此是隨機事件,所以選項C不符合題意;D.上海明天可能下雨,有可能不下雨,因此是隨機事件,所以選項D不符合題意;故選:.【點睛】本題考查的是確定事件與隨機事件的概念,掌握確定事件分為必然事件,不可能事件,及隨機事件的概念是解題的關鍵.二、填空題1、22020【分析】根據(jù),,點的坐標是,得,點的橫坐標是,點的橫坐標是-,同理可得點的橫坐標是,點的橫坐標是,點的橫坐標是,點的橫坐標是,點的橫坐標是,依次進行下去,可得點的橫坐標,進而求得的橫坐標.【詳解】解:∵∠OA0A1=90°,∠A1OA0=60°,點A0的坐標是(1,0),∴OA0=1,∴點A1的橫坐標是1=20,∴OA1=2OA0=2,∵∠A2A1O=90°,∠A2OA1=60°,∴OA2=2OA1=4,∴點A2的橫坐標是-OA2=-2=-21,依次進行下去,Rt△OA2A3,Rt△OA3A4…,同理可得:點A3的橫坐標是﹣2OA2=﹣8=﹣23,點A4的橫坐標是﹣8=﹣23,點A5的橫坐標是OA5=×2OA4=2OA3=4OA2=16=24,點A6的橫坐標是2OA5=2×2OA4=23OA3=64=26,點A7的橫坐標是64=26,…發(fā)現(xiàn)規(guī)律,6次一循環(huán),即,,2021÷6=336……5則點A2021的橫坐標與的坐標規(guī)律一致是22020.故答案為:22020.【點睛】本題考查了規(guī)律型——點的坐標,解決本題的關鍵是理解動點的運動過程,總結規(guī)律,發(fā)現(xiàn)規(guī)律,點A3n在軸上,且坐標為.2、60【分析】正六邊形連接各個頂點和中心,這些連線會將360°分成6分,每份60°因此至少旋轉60°,正六邊形就能與自身重合.【詳解】360°÷6=60°故答案為:60【點睛】本題考查中心對稱圖形的性質,根據(jù)圖形特征找到最少旋轉度數(shù)是本題關鍵.3、【分析】直接利用概率公式進行計算即可.【詳解】解:過年時包了100個餃子,有10個餃子包有幸運果,任意挑選一個餃子,正好是包有幸運果餃子的概率是故答案為:【點睛】本題考查的是簡單隨機事件的概率,熟練的利用概率公式進行計算是解本題的關鍵;概率的含義:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.4、以點為圓心,8厘米長為半徑的圓【分析】由題意直接根據(jù)圓的定義進行分析即可解答.【詳解】到點的距離等于8厘米的點的軌跡是:以點為圓心,2厘米長為半徑的圓.故答案為:以點為圓心,8厘米長為半徑的圓.【點睛】本題主要考查了圓的定義,正確理解定義是關鍵,注意掌握圓的定義是在同一平面內到定點的距離等于定長的點的集合.5、【分析】陰影部分的面積等于等邊三角形的面積減去三個扇形面積,而這三個扇形拼起來正好是一個半徑為半圓的面積,即陰影部分面積=等邊三角形面積?半徑為半圓的面積,因此求出半圓面積,連接AD,則可求得AD的長,從而可求得等邊三角形的面積,即可求得陰影部分的面積.【詳解】連接AD,如圖所示則AD⊥BC∵D點是BC的中點∴由勾股定理得∴∵S半圓=∴S陰影=S△ABC?S半圓故答案為:【點睛】本題是求組合圖形的面積,扇形面積及三角形面積的計算.關鍵是把不規(guī)則圖形面積通過割補轉化為規(guī)則圖形的面積計算.6、60【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圓周角定理即可解決問題.【詳解】解:如圖作OE⊥BC于E.∵OE⊥BC,∴BE=EC=,∠BOE=∠COE,∴OE=1,∴OB=2OE,∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案為:60.【點睛】本題考查三角形的外心與外接圓、圓周角定理.垂徑定理、勾股定理、直角三角形30度角性質、等腰三角形的性質等知識,解題的關鍵是學會添加常用輔助線,靈活運用所學知識解決問題.7、【分析】如圖,取的中點,連接,,,證明,進而證明在上運動,且垂直平分,根據(jù),求得最值,根據(jù)正方形的性質和勾股定理求得的長即可求得的最小值.【詳解】解:如圖,取的中點,連接,,,將線段MN繞點M順時針旋轉60°得到線段MQ,,是等邊三角形,,是的中點,是的中點是等邊三角形,即在和中,又是的中點點在上是的中點,是等邊三角,又垂直平分即的最小值為四邊形是正方形,且的最小值為故答案為:【點睛】本題考查了正方形的性質等邊三角形的性質,旋轉的性質,全等三角形的性質與判定,勾股定理,垂直平分線的性質與判定,根據(jù)以上知識轉化線段是解題的關鍵.三、解答題1、(1)①見解析;②見解析;(2).【分析】(1)①連接OD,由角平分線的性質解得,再根據(jù)內錯角相等,兩直線平行,證明,繼而由兩直線平行,同旁內角互補證明即可解題;②連接DE,由弦切角定理得到,再證明,由相似三角形對應邊成比例解題;(2)證明是等邊三角形,四邊形DOAF是菱形,,結合扇形面積公式解題.【詳解】解:(1)①連接OD,是∠BAC的平分線是⊙O的切線;②連接DE,是⊙O的切線,是直徑(2)連接DE、OD、DF、OF,設圓的半徑為R,點F是劣弧AD的中點,OF是DA中垂線DF=AF,是等邊三角形,四邊形DOAF是菱形,.【點睛】本題考查圓的綜合題,涉及切線的判定與性質、平行四邊形的性質、等邊三角形的判定與性質、相似三角形的判定與性質、扇形面積等知識,綜合性較強,有難度,掌握相關知識是解題關鍵.2、(1)作圖見解析(2)是的切線,理由見解析【分析】(1)如圖1所示,以點為圓心,大于為半徑畫弧,交于點,交于點;分別以點為圓心,大于的長度為半徑畫弧,交點為,連接即為角平分線,與的交點即為點.(2)如圖2所示,連接,由題意可知,,,,;在四邊形中,,,求出,得出,由于是半徑,故有是的切線.(1)解:如圖1所示(2)解:是的切線.如圖2所示,連接由題意可知,,,,在四邊形中∵∴∴又∵是半徑∴是的切線【點睛】本題考查了角平分線的畫法與性質,切線的判定,圓周角等知識點.解題的關鍵在于將知識綜合靈活運用.3、【分析】用A、B、C、D分別表示化學、生物、地理、政治,然后畫出樹狀圖求解.【詳解】解:用A、B、C、D分別表示化學、生物、地理、政治,畫樹狀圖如下,,由樹狀圖可知,共有12種等可能發(fā)生的情況,其中符合條件的情況有2種,所以該同學抽出的兩張卡片是“化學、政治”的概率=.【點睛】本題考查了樹狀圖法或列表法求概率,解題的關鍵是正確畫出樹狀圖或表格,然后用符合條件的情況數(shù)m除以所有等可能發(fā)生的情況數(shù)n即可,即.4、(1);(2)證明見詳解;(3).【分析】(1)過點P作PG⊥EC于G,根據(jù)等腰直角三角形得出∠B=∠C=45°,根據(jù)PG⊥EC,可取∠GPC=90°-∠C=45°,可得PG=GC,根據(jù)三角形外角性質∠EPC=75°,可求∠EPG=30°,根據(jù)30°直角三角形性質得出EP=2EG,根據(jù)勾股定理根據(jù)EC=EG+GC=EG+,可求EG=即可;(2)連結AE,在CE上截取EJ=AE,連結AJ,根據(jù)∠MAH=45°=∠HEC,可得點A、M、C、E四點共圓,得出∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,可得△AEJ為等腰直角三角形,根據(jù)根據(jù)勾股定理AJ=,得出∠CAE=∠MCE,可證∠JAC=∠JCA,可得AJ=JC=,先證△CHM∽△ECM,再證△AEM≌△HEC(AAS),得出EM=EC,再證△AME≌△MCF(AAS),得出AE=MF即可;(3)分兩種情況,當BE在∠ABC的平分線上時,與BE在△ABC外部時,當BE在∠ABC的平分線上時,作∠ABC的平分線交AC于O,將△AEC逆時針旋轉90°得到△AFC′,過點O作OP⊥BC于P,則點E在BO上,有∠ABE=∠ABC,先證B、A、C′三點共線,根據(jù)兩點之交線段最短可得BF+CE=BF+C′F≥BC′,當點F在BC′上時,BF+CE最短=BC′,此時點E在AC上與點O重合,然后利用勾股定理EC=,BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF在Rt△ABE中,根據(jù)勾股定理,當BE在△ABC外部時,∠EBA=,將△EAC逆時針旋轉90°得到△FAC′,先證B、A、C′三點共線,根據(jù)兩點之間線段最短可得BF+CE=BF+FC′≥BC′,當點F在BC′上時,BF+CE最短=BC′,再證EF=BF,然后根據(jù)勾股定理BF=CE=AE+AC=AF+AB=在Rt△EAB中,根據(jù)勾股定理即可.【詳解】解:(1)過點P作PG⊥EC于G,∵∠BAC=90°,AB=AC,∴∠B=∠C=45°,∵PG⊥EC,∴∠GPC=90°-∠C=45°,∴PG=GC,∵∠EAC=30°,∠EDF=90°,DE=DF,∴∠DEF=∠F=45°,∴∠EPC=∠AEF+∠EAC=30°+45°=75°,∴∠EPG=∠EPC-∠GPC=75°-45°=30°,∴EP=2EG,在Rt△EPG中,根據(jù)勾股定理∴GC=PG=∴EC=EG+GC=EG+,∴EG=,∴EP=2EG=;(2)連結AE,在CE上截取EJ=AE,連結AJ,∵BM=CM,AB=AC,∠BAC=90°,∴AM⊥BC,AM=BM=CM,∴∠MAH=45°=∠HEC,∴點A、M、C、E四點共圓,∴∠AEM=∠ACM=45°=∠HEC,∠AME=∠ACE,∴∠AEJ=∠AEM+∠HEC=45°+45°=90°,∵AE=JE,∴∠EAJ=∠EJA=45°,在Rt△AEJ中,根據(jù)勾股定理AJ=,∵∠CAE=∠MCE,∴∠JAC+45°=∠JCA+45°,∴∠JAC=∠JCA,∴AJ=JC=,∵∠HCM=∠CEM=45°,∠HMC=∠CME,∴△CHM∽△ECM,∴∠MHC=∠MCE,∵∠EHA=∠MHC=∠MCE=∠EAH∴AE=HE,在△AEM和△HEC中,,∴△AEM≌△HEC(AAS),∴EM=EC,∴∠EMC=∠ECM,∵∠AME+∠EMC=∠ECM+∠MCF=90°,∴∠AME=∠MCF,在△AME和△MCF中,∴△AME≌△MCF(AAS),∴AE=MF,∴CE=EJ+JC=MF+AE;(3)分兩種情況,當BE在∠ABC的平分線上時,與BE在△ABC外部時,當當BE在∠ABC的平分線上時,作∠ABC的平分線交AC于O,將△AEC逆時針旋轉90°得到△AFC′,過點O作OP⊥BC于P,則點E在BO上,有∠ABE=∠ABC,∵△AEC≌△AFC′,∴∠CAE=∠C′AF,∵∠BAC′=∠BAC+∠OAC′=∠BAC+∠FAC′+∠OAF=∠BAC+∠EAC+∠OAF=∠BAC+∠EAF=180°,∴B、A、C′三點共線,∴BF+CE=BF+C′F≥BC′,當點F在BC′上時,BF+CE最短=BC′,此時點E在AC上與點O重合,∵BO為∠ABC的平分線,OA⊥AB,OP⊥BC,∴OP=AO=AF,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠PEC=180°-∠EPC-∠C=45°,∴PC=EP=AF,∴EC=,∴AC=AE+EC=AF+=(1+)AF,∴BF=AB+AF=AC+AF=(1+)AF+AF=(2+)AF,在Rt△ABE中,根據(jù)勾股定理,∴;當BE在△ABC外部時,∠EBA=,將△EAC逆時針旋轉90°得到△FAC′,則△EAC≌△FAC′,∴AC′=AC,EC=FC′,∠EAC=∠FAC′,∵∠FEB+∠EAC=360°-∠EAF-∠BAC=360°-90°-90°=180°,∴∠FAB+∠FAC′=∠FAB+∠EAC=180°,∴B、A、C′三點共線,∴BF+CE=BF+FC′≥BC′,∴點F在BC′上時,BF+CE最短=BC′,∵∠EBA=,∠EFA=45°,∴∠EFA=∠EBA+∠BEF=45°,∴∠BEF=45°-∠EBA=45°-22.5°=22.5°,∴EF=BF,在Rt△EAF中,,∴BF=,∴AB=BF+AF=+AF=,∴CE=AE+AC=AF+AB=,在Rt△EAB中,根據(jù)勾股定理,∴.綜合.【點睛】本題考查等腰直角三角形性質,三角形外角性質,30°直角三角形性質,勾股定理,三角形全等判定與性質,四點共圓,同弧所對圓周角性質,三角形相似判定與性質,圖形旋轉性質,最短路徑問題,角平分線性質,分類討論思想,本題難度大,應用知識多,是中考壓軸題,利用輔助線作出正確圖形是解題關鍵.5、(1)30°,70°,40°;(2)∠AOC-∠BOE=40°,理由見解析;(3)t的取值為5或20或62【分析】(1)先根據(jù)已知求出∠DOC、∠BOC,再求出當t=4時的旋轉角的度數(shù),再利用角的和與差求解即可;(2)設旋轉角為x,用x表示∠AOC和∠BOE,即可得出結論;(3)分①OA為∠DOC的平分線;②OC為∠DOA的平分線;③OD為∠COA的平分線三種情況,利用角平分線定義和旋轉性質求出旋轉角即可.(1)解:∵∠EOC=130°,∠AOB=∠BOE=90°,∴∠DOC=180°-130°=50°,∠BOC=130°-90°=40°,當t=4時,旋轉角4×5°=20°,∴∠AOC=∠DOC-∠DOA=50°-20°=30°,∠BOE=90°-20°=70°,∠BOE-∠AOC=70°-30°=40°,故答案為:30°,70°,40°;(2)解:∠AOC-∠BOE=40°,理由為:設旋轉角為x,當三角板旋轉至邊AB與射線OE相交時,∠AOC=x-50°,∠BOE=x-90°,∴∠AOC-∠BOE=(x-50°)-(x-90°)=40°;(3)解:存在,①當OA為∠DOC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 羽毛球衛(wèi)生球館制度
- 健身房衛(wèi)生管理制度大全
- 浴池工衛(wèi)生管理制度
- 陶瓷廠環(huán)境衛(wèi)生管理制度
- 日間照料衛(wèi)生室管理制度
- ?;翻h(huán)境衛(wèi)生管理制度
- 環(huán)衛(wèi)處愛國衛(wèi)生管理制度
- 省衛(wèi)生監(jiān)督管理制度
- 衛(wèi)生院違諾責任追究制度
- 居民區(qū)安全衛(wèi)生管理制度
- 銀行消保投訴分析培訓
- 2020春人教版部編本三年級下冊語文全冊課文原文
- 《微生物與殺菌原理》課件
- 醫(yī)療機構藥事管理規(guī)定版
- 北京市歷年中考語文現(xiàn)代文之議論文閱讀30篇(含答案)(2003-2023)
- 檔案學概論-馮惠玲-筆記
- 全國民用建筑工程設計技術措施-結構
- (正式版)YST 1693-2024 銅冶煉企業(yè)節(jié)能診斷技術規(guī)范
- 1999年勞動合同范本【不同附錄版】
- 全國優(yōu)質課一等獎職業(yè)學校教師信息化大賽《語文》(基礎模塊)《我愿意是急流》說課課件
- 初三寒假家長會ppt課件全面版
評論
0/150
提交評論