解析卷-人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》定向練習(xí)試題(含詳解)_第1頁(yè)
解析卷-人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》定向練習(xí)試題(含詳解)_第2頁(yè)
解析卷-人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》定向練習(xí)試題(含詳解)_第3頁(yè)
解析卷-人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》定向練習(xí)試題(含詳解)_第4頁(yè)
解析卷-人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》定向練習(xí)試題(含詳解)_第5頁(yè)
已閱讀5頁(yè),還剩29頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

人教版9年級(jí)數(shù)學(xué)上冊(cè)《圓》定向練習(xí)考試時(shí)間:90分鐘;命題人:教研組考生注意:1、本卷分第I卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,滿分100分,考試時(shí)間90分鐘2、答卷前,考生務(wù)必用0.5毫米黑色簽字筆將自己的姓名、班級(jí)填寫在試卷規(guī)定位置上3、答案必須寫在試卷各個(gè)題目指定區(qū)域內(nèi)相應(yīng)的位置,如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新的答案;不準(zhǔn)使用涂改液、膠帶紙、修正帶,不按以上要求作答的答案無(wú)效。第I卷(選擇題30分)一、單選題(10小題,每小題3分,共計(jì)30分)1、如圖,正五邊形內(nèi)接于⊙,為上的一點(diǎn)(點(diǎn)不與點(diǎn)重合),則的度數(shù)為(

)A. B. C. D.2、如圖,一個(gè)油桶靠在直立的墻邊,量得并且則這個(gè)油桶的底面半徑是()A. B. C. D.3、如圖,是的直徑,,若,則的度數(shù)是(

)A.32° B.60° C.68° D.64°4、如圖,⊙O的半徑為5,弦AB=8,P是弦AB上的一個(gè)動(dòng)點(diǎn)(不與A,B重合),下列符合條件的OP的值是()A.6.5 B.5.5 C.3.5 D.2.55、如圖,破殘的輪子上,弓形的弦AB為4m,高CD為1m,則這個(gè)輪子的半徑長(zhǎng)為()A.m B.m C.5m D.m6、如圖所示,矩形紙片中,,把它分割成正方形紙片和矩形紙片后,分別裁出扇形和半徑最大的圓,恰好能作為一個(gè)圓錐的側(cè)面和底面,則的長(zhǎng)為(

)A. B. C. D.7、如圖,⊙O的半徑為5cm,直線l到點(diǎn)O的距離OM=3cm,點(diǎn)A在l上,AM=3.8cm,則點(diǎn)A與⊙O的位置關(guān)系是(

)A.在⊙O內(nèi) B.在⊙O上 C.在⊙O外 D.以上都有可能8、已知點(diǎn)在上.則下列命題為真命題的是(

)A.若半徑平分弦.則四邊形是平行四邊形B.若四邊形是平行四邊形.則C.若.則弦平分半徑D.若弦平分半徑.則半徑平分弦9、如圖,AC是⊙O的直徑,弦AB//CD,若∠BAC=32°,則∠AOD等于(

)A.64° B.48° C.32° D.76°10、在平面直角坐標(biāo)系中,⊙O的半徑為2,點(diǎn)A(1,)與⊙O的位置關(guān)系是(

)A.在⊙O上 B.在⊙O內(nèi) C.在⊙O外 D.不能確定第Ⅱ卷(非選擇題70分)二、填空題(10小題,每小題4分,共計(jì)40分)1、如圖,AB為圓O的切線,點(diǎn)A為切點(diǎn),OB交圓O于點(diǎn)C,點(diǎn)D在圓O上,連接AD、CD、OA,若∠ADC=25°,則∠B的度數(shù)為____.2、如圖,將三角形AOC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)120°得三角形BOD,已知OA=4,OC=1,那么圖中陰影部分的面積為_____.(結(jié)果保留π)3、如圖所示是一個(gè)幾何體的三視圖,如果一只螞蟻從這個(gè)幾何體的點(diǎn)出發(fā),沿表面爬到的中點(diǎn)處,則最短路線長(zhǎng)為__________.4、圓錐的底面半徑為3,側(cè)面積為,則這個(gè)圓錐的母線長(zhǎng)為________.5、已知圓錐的高為4cm,母線長(zhǎng)為5cm,則圓錐的側(cè)面積為_____cm2.6、已知:如圖,半圓O的直徑AB=12cm,點(diǎn)C,D是這個(gè)半圓的三等分點(diǎn),則弦AC,AD和CD圍成的圖形(圖中陰影部分)的面積S是___.7、如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(20,0),點(diǎn)B的坐標(biāo)是(16,0),點(diǎn)C、D在以O(shè)A為直徑的半圓M上,且四邊形OCDB是平行四邊形,則點(diǎn)C的坐標(biāo)為_____.8、劉徽是我國(guó)魏晉時(shí)期卓越的數(shù)學(xué)家,他在《九章算術(shù)》中提出了“割圓術(shù)”,利用圓的內(nèi)接正多邊形逐步逼近圓來(lái)近似計(jì)算圓的面積,如圖,若用圓的內(nèi)接正十二邊形的面積來(lái)近似估計(jì)的面積,設(shè)的半徑為1,則__________.9、如圖,已知正六邊形ABCDEF的邊長(zhǎng)為2,對(duì)角線CF和BE相交于點(diǎn)N,對(duì)角線DF與BE相交于點(diǎn)M,則MN=_____.10、如圖,在⊙O中,的度數(shù)等于250°,半徑OC垂直于弦AB,垂足為D,那么AC的度數(shù)等于________度.三、解答題(5小題,每小題6分,共計(jì)30分)1、如圖,是的高,為的中點(diǎn).試說(shuō)明點(diǎn)在以點(diǎn)為圓心的同一個(gè)圓上.2、如圖,正方形ABCD的外接圓為⊙O,點(diǎn)P在劣弧CD上(不與C點(diǎn)重合).(1)求∠BPC的度數(shù);(2)若⊙O的半徑為8,求正方形ABCD的邊長(zhǎng).3、問(wèn)題提出(1)如圖①,在△ABC中,AB=AC=10,BC=12,點(diǎn)O是△ABC的外接圓的圓心,則OB的長(zhǎng)為問(wèn)題探究(2)如圖②,已知矩形ABCD,AB=4,AD=6,點(diǎn)E為AD的中點(diǎn),以BC為直徑作半圓O,點(diǎn)P為半圓O上一動(dòng)點(diǎn),求E、P之間的最大距離;問(wèn)題解決(3)某地有一塊如圖③所示的果園,果園是由四邊形ABCD和弦CB與其所對(duì)的劣弧場(chǎng)地組成的,果園主人現(xiàn)要從入口D到上的一點(diǎn)P修建一條筆直的小路DP.已知AD∥BC,∠ADB=45°,BD=120米,BC=160米,過(guò)弦BC的中點(diǎn)E作EF⊥BC交于點(diǎn)F,又測(cè)得EF=40米.修建小路平均每米需要40元(小路寬度不計(jì)),不考慮其他因素,請(qǐng)你根據(jù)以上信息,幫助果園主人計(jì)算修建這條小路最多要花費(fèi)多少元?4、如圖所示,,.(1)已知,求以為直徑的半圓面積及扇形的面積;(2)若的長(zhǎng)度未知,已知陰影甲的面積為16平方厘米,能否求陰影乙的面積?若能,請(qǐng)直接寫出結(jié)果;若不能,請(qǐng)說(shuō)明理由.5、在中,,,D為的中點(diǎn),E,F(xiàn)分別為,上任意一點(diǎn),連接,將線段繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°得到線段,連接,.(1)如圖1,點(diǎn)E與點(diǎn)C重合,且的延長(zhǎng)線過(guò)點(diǎn)B,若點(diǎn)P為的中點(diǎn),連接,求的長(zhǎng);(2)如圖2,的延長(zhǎng)線交于點(diǎn)M,點(diǎn)N在上,且,求證:;(3)如圖3,F(xiàn)為線段上一動(dòng)點(diǎn),E為的中點(diǎn),連接,H為直線上一動(dòng)點(diǎn),連接,將沿翻折至所在平面內(nèi),得到,連接,直接寫出線段的長(zhǎng)度的最小值.-參考答案-一、單選題1、B【解析】【分析】根據(jù)圓周角的性質(zhì)即可求解.【詳解】連接CO、DO,正五邊形內(nèi)心與相鄰兩點(diǎn)的夾角為72°,即∠COD=72°,同一圓中,同弧或同弦所對(duì)應(yīng)的圓周角為圓心角的一半,故∠CPD=,故選B.【考點(diǎn)】此題主要考查圓內(nèi)接多邊形的性質(zhì),解題的關(guān)鍵是熟知圓周角定理的應(yīng)用.2、C【解析】【分析】根據(jù)切線的性質(zhì),連接過(guò)切點(diǎn)的半徑,構(gòu)造正方形求解即可.【詳解】如圖所示:設(shè)油桶所在的圓心為O,連接OA,OC,∵AB、BC與⊙O相切于點(diǎn)A、C,∴OA⊥AB,OC⊥BC,又∵AB⊥BC,OA=OC,∴四邊形OABC是正方形,∴OA=AB=BC=OC=0.8m,故選:C.【考點(diǎn)】考查了切線的性質(zhì)和正方形的判定、性質(zhì),解題關(guān)鍵是理解和掌握切線的性質(zhì).3、D【解析】【分析】根據(jù)已知條件和圓心角、弧、弦的關(guān)系,可知,然后根據(jù)對(duì)頂角相等即可求解.【詳解】,.,,,故選:D.【考點(diǎn)】本題主要考查圓心角、弧、弦的關(guān)系、對(duì)頂角相等,較簡(jiǎn)單,掌握基本概念是解題關(guān)鍵.4、C【解析】【分析】連接OB,作OM⊥AB與M.根據(jù)垂徑定理和勾股定理,求出OP的取值范圍即可判斷.【詳解】解:連接OB,作OM⊥AB與M.∵OM⊥AB,∴AM=BM=AB=4,在直角△OBM中,∵OB=5,BM=4,∴.∴,故選:C.【考點(diǎn)】本題考查了垂徑定理、勾股定理,常把半弦長(zhǎng),半圓心角,圓心到弦距離轉(zhuǎn)換到同一直角三角形中,然后通過(guò)直角三角形予以求解.5、D【解析】【分析】連接OB,由垂徑定理得出BD的長(zhǎng);連接OB,再在中,由勾股定理得出方程,解方程即可.【詳解】解:連接OB,如圖所示:由題意得:OC⊥AB,∴AD=BD=AB=2(m),在Rt△OBD中,根據(jù)勾股定理得:OD2+BD2=OB2,即(OB﹣1)2+22=OB2,解得:OB=(m),即這個(gè)輪子的半徑長(zhǎng)為m,故選:D.【考點(diǎn)】本題主要考查垂徑定理的應(yīng)用以及勾股定理,熟練掌握垂徑定理和勾股定理是解題的關(guān)鍵.6、B【解析】【分析】設(shè)AB=xcm,則DE=(6-x)cm,根據(jù)扇形的弧長(zhǎng)等于圓錐底面圓的周長(zhǎng)列出方程,求解即可.【詳解】設(shè),則DE=(6-x)cm,由題意,得,解得.故選B.【考點(diǎn)】本題考查了圓錐的計(jì)算,矩形的性質(zhì),正確理解圓錐的側(cè)面展開圖與原來(lái)的扇形之間的關(guān)系是解決本題的關(guān)鍵,理解圓錐的母線長(zhǎng)是扇形的半徑,圓錐的底面圓周長(zhǎng)是扇形的弧長(zhǎng).7、A【解析】【詳解】如圖,連接OA,則在直角△OMA中,根據(jù)勾股定理得到OA=.∴點(diǎn)A與⊙O的位置關(guān)系是:點(diǎn)A在⊙O內(nèi).故選A.8、B【解析】【分析】根據(jù)圓的有關(guān)性質(zhì)、垂徑定理及其推論、特殊平行四邊形的判定與性質(zhì)依次對(duì)各項(xiàng)判斷即可.【詳解】A.∵半徑平分弦,∴OB⊥AC,AB=BC,不能判斷四邊形OABC是平行四邊形,假命題;B.∵四邊形是平行四邊形,且OA=OC,∴四邊形是菱形,∴OA=AB=OB,OA∥BC,∴△OAB是等邊三角形,∴∠OAB=60o,∴∠ABC=120o,真命題;C.∵,∴∠AOC=120o,不能判斷出弦平分半徑,假命題;D.只有當(dāng)弦垂直平分半徑時(shí),半徑平分弦,所以是假命題,故選:B.【考點(diǎn)】本題主要考查命題與證明,涉及垂徑定理及其推論、菱形的判定與性質(zhì)、等邊三角形的判定與性質(zhì)等知識(shí),解答的關(guān)鍵是會(huì)利用所學(xué)的知識(shí)進(jìn)行推理證明命題的真假.9、A【解析】【分析】由AB//CD,∠BAC=32°,根據(jù)平行線的性質(zhì),即可求得∠ACD的度數(shù),又由在同圓或等圓中,同弧或等弧所對(duì)的圓周角等于這條弧所對(duì)的圓心角的一半,即可求得∠AOD的度數(shù).【詳解】解:∵弦AB//CD,∠BAC=32°,∴∠ACD=∠BAD=32°,∴∠AOD=2∠ACD=2×32°=64°.故選:A【考點(diǎn)】此題考查了圓周角定理與平行線的性質(zhì).解題的關(guān)鍵是注意掌握在同圓或等圓中,同弧或等弧所對(duì)的圓周角等于這條弧所對(duì)的圓心角的一半.10、A【解析】【分析】根據(jù)點(diǎn)A的坐標(biāo),求出OA=2,根據(jù)點(diǎn)與圓的位置關(guān)系即可做出判斷.【詳解】解:∵點(diǎn)A的坐標(biāo)為(1,),∴由勾股定理可得:OA=,又∵⊙O的半徑為2,∴點(diǎn)A在⊙O上.故選:A.【考點(diǎn)】本題考查了點(diǎn)和圓的位置關(guān)系,點(diǎn)和圓的位置關(guān)系是由點(diǎn)到圓心的距離和圓的半徑間的大小關(guān)系確定的:(1)當(dāng)時(shí),點(diǎn)在圓外;(2)當(dāng)時(shí),點(diǎn)在圓上;(3)當(dāng)時(shí),點(diǎn)在圓內(nèi).二、填空題1、40°【解析】【分析】根據(jù)圓周角和圓心角的關(guān)系,可以得到∠AOC的度數(shù),然后根據(jù)AB為⊙O的切線和直角三角形的兩個(gè)銳角互余,即可求得∠B的度數(shù).【詳解】解:∵∠ADC=25°,∴∠AOC=50°,∵AB為⊙O的切線,點(diǎn)A為切點(diǎn),∴∠OAB=90°,∴∠B=90°-∠AOC=90°-50°=40°,故答案為:40°.【考點(diǎn)】本題考查切線的性質(zhì)、圓周角定理、直角三角形的性質(zhì),利用數(shù)形結(jié)合的思想解答問(wèn)題是解答本題的關(guān)鍵.2、5π【解析】【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積,利用扇形的面積公式計(jì)算即可求解.【詳解】∵△AOC≌△BOD,∴陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積5π.故答案為5π.【考點(diǎn)】本題考查了旋轉(zhuǎn)的性質(zhì)以及扇形的面積公式,正確理解:陰影部分的面積=扇形OAB的面積﹣扇形OCD的面積是解題的關(guān)鍵.3、【解析】【分析】將圓錐的側(cè)面展開,設(shè)頂點(diǎn)為B',連接BB',AE.線段AC與BB'的交點(diǎn)為F,線段BF是最短路程.【詳解】如圖將圓錐側(cè)面展開,得到扇形ABB′,則線段BF為所求的最短路程.設(shè)∠BAB′=n°.∵=4,∴n=120即∠BAB′=120°.∵E為弧BB′中點(diǎn),∴∠AFB=90°,∠BAF=60°,∴BF=AB?sin∠BAF=6×=,∴最短路線長(zhǎng)為.故答案為:.【考點(diǎn)】本題考查了平面展開?最短路徑問(wèn)題,解題時(shí)注意把立體圖形轉(zhuǎn)化為平面圖形的思維.4、4【解析】【分析】根據(jù)圓錐的底面半徑可以求出底面周長(zhǎng)即為展開后的弧長(zhǎng),側(cè)面積即為展開后扇形的面積,再根據(jù)扇形的面積公式求出扇形的半徑即為圓錐的母線.【詳解】∵底面半徑為3,∴底面周長(zhǎng)=2×3π=6π.∴圓錐的母線=.故答案為:4.【考點(diǎn)】本題考查圓錐與扇形的結(jié)合,關(guān)鍵在于理解圓錐周長(zhǎng)是扇形弧長(zhǎng),圓錐母線是扇形半徑.5、15π【解析】【分析】首先利用勾股定理求得圓錐的底面半徑,然后利用圓錐的側(cè)面積=π×底面半徑×母線長(zhǎng),把相應(yīng)數(shù)值代入即可求解.【詳解】解:根據(jù)題意,圓錐的底面圓的半徑==3(cm),所以圓錐的側(cè)面積=π×3×5=15π(cm2).故答案為:15π.【考點(diǎn)】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng),圓錐的側(cè)面積等于“π×底面半徑×母線長(zhǎng)”.6、【解析】【分析】如圖,連接OC、OD、CD,OC交AD于點(diǎn)E,由點(diǎn)C,D是這個(gè)半圓的三等分點(diǎn)可得,在同圓中,同弧所對(duì)的圓周角是圓心角的一半,即可得出,再根據(jù)得,,都是等邊三角形,所以,,可證,故,由扇形的面積公式計(jì)算即可.【詳解】如圖所示,連接OC、OD、CD,OC交AD于點(diǎn)E,點(diǎn)C,D是這個(gè)半圓的三等分點(diǎn),,,,,都是等邊三角形,,,在與中,,,,.故答案為:.【考點(diǎn)】本題考查了扇形面積公式的應(yīng)用,證明,把求陰影部分面積轉(zhuǎn)化為求扇形面積是解題的關(guān)鍵.7、(2,6)【解析】【分析】此題涉及的知識(shí)點(diǎn)是平面直角坐標(biāo)系圖像性質(zhì)的綜合應(yīng)用.過(guò)點(diǎn)M作MF⊥CD于F,過(guò)C作CE⊥OA于E,在Rt△CMF中,根據(jù)勾股定理即可求得MF與EM,進(jìn)而就可求得OE,CE的長(zhǎng),從而求得C的坐標(biāo).【詳解】∵四邊形OCDB是平行四邊形,點(diǎn)B的坐標(biāo)為(16,0),CD∥OA,CD=OB=16,過(guò)點(diǎn)M作MF⊥CD于F,則過(guò)C作CE⊥OA于E,∵A(20,0),∴OA=20,OM=10,∴OE=OM?ME=OM?CF=10?8=2,連接MC,∴在Rt△CMF中,∴點(diǎn)C的坐標(biāo)為(2,6).故答案為(2,6).【考點(diǎn)】此題重點(diǎn)考察學(xué)生對(duì)坐標(biāo)與圖形性質(zhì)的實(shí)際應(yīng)用,勾股定理,注意數(shù)形結(jié)合思想在解題的關(guān)鍵.8、【解析】【分析】如圖,過(guò)點(diǎn)A作AC⊥OB,垂足為C,先求出圓的面積,再求出△ABC面積,繼而求得正十二邊形的面積即可求得答案.【詳解】如圖,過(guò)點(diǎn)A作AC⊥OB,垂足為C,∵的半徑為1,∴的面積,OA=OB=1,∴圓的內(nèi)接正十二邊形的中心角為∠AOB=,∴AC=OB=,∴S△AOB=OB?AC=,∴圓的內(nèi)接正十二邊形的面積S1=12S△AOB=3,∴則,故答案為.【考點(diǎn)】本題考查了正多邊形與圓,正確的求出正十二邊形的面積是解題的關(guān)鍵.9、1【解析】【分析】根據(jù)正六邊形的性質(zhì)和直角三角形的性質(zhì)即可得到結(jié)論.【詳解】∵正六邊形ABCDEF的邊長(zhǎng)為2,且對(duì)角線CF和BE相交于點(diǎn)N,∴∠FNE=60°,∴△ENF是等邊三角形,∴∠FNM=60°,F(xiàn)N=EF=2,∵對(duì)角線DF與BE相交于點(diǎn)M,∴∠FMN=90°,∴MN=FN=2=1,故答案為:1.【考點(diǎn)】本題考查了正多邊形和圓,正六邊形的性質(zhì),直角三角形的性質(zhì),正確的識(shí)別圖形是解題的關(guān)鍵.10、55【解析】【分析】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,再根據(jù)垂徑定理即可得解.【詳解】連接OA,OB,由已知可得∠AOB=360°﹣250°=110°,∵OC⊥AB,∴,∴∠AOC=∠AOB=55°.故答案為55.【考點(diǎn)】本題主要考查圓心角定理與垂徑定理,解此題的關(guān)鍵在于熟練掌握其知識(shí)點(diǎn).三、解答題1、見解析【解析】【分析】先連接,,根據(jù)直角三角形斜邊上的中線等于斜邊的一半,可得,即可證結(jié)論.【詳解】證明:連接,.分別是的高,為的中點(diǎn),,∴點(diǎn)在以點(diǎn)為圓心的同一圓上.【考點(diǎn)】本題主要考查了直角三角形和圓的性質(zhì),掌握直角三角形斜邊上的中線等于斜邊的一半這一性質(zhì)是關(guān)鍵.2、(1)45°;(2)8【解析】【詳解】試題分析:(1)連接OB,OC,由正方形的性質(zhì)知,是等腰直角三角形,根據(jù),由圓周角定理可以求出;(2)過(guò)點(diǎn)O作OE⊥BC于點(diǎn)E,由等腰直角三角形的性質(zhì)可知OE=BE,由垂徑定理可知BC=2BE,故可得出結(jié)論.試題解析:(1)連接OB,OC,∵四邊形ABCD為正方形,∴∠BOC=90°,∴∠P=∠BOC=45°;(2)過(guò)點(diǎn)O作OE⊥BC于點(diǎn)E,∵OB=OC,∠BOC=90°,∴∠OBE=45°,∴OE=BE,∵OE2+BE2=OB2,∴BE=,∴BC=2BE=2×.點(diǎn)睛:垂徑定理:垂直于弦的直徑平分弦并且平分弦所對(duì)的兩條弧.3、(1);(2)E、P之間的最大距離為7;(3)修建這條小路最多要花費(fèi)元.【解析】【分析】(1)若AO交BC于K,則AK=8,在Rt△BOK中,設(shè)OB=x,可得x2=62+(8﹣x)2,解方程可得OB的長(zhǎng);(2)延長(zhǎng)EO交半圓于點(diǎn)P,可求出此時(shí)E、P之間的最大距離為OE+OP的長(zhǎng)即可;(3)先求出所在圓的半徑,過(guò)點(diǎn)D作DG⊥BC,垂足為G,連接DO并延長(zhǎng)交于點(diǎn)P,則DP為入口D到上一點(diǎn)P的最大距離,求出DP長(zhǎng)即可求出修建這條小路花費(fèi)的最多費(fèi)用.【詳解】(1)如圖,若AO交BC于K,∵點(diǎn)O是△ABC的外接圓的圓心,AB=AC,∴AK⊥BC,BK=,∴AK=,在Rt△BOK中,OB2=BK2+OK2,設(shè)OB=x,∴x2=62+(8?x)2,解得x=,∴OB=;故答案為:.(2)如圖,連接EO,延長(zhǎng)EO交半圓于點(diǎn)P,可求出此時(shí)E、P之間的距離最大,∵在是任意取一點(diǎn)異于點(diǎn)P的P′,連接OP′,P′E,∴EP=EO+OP=EO+OP′>EP′,即EP>EP′,∵AB=4,AD=6,∴EO=4,OP=OC=,∴EP=OE+OP=7,∴E、P之間的最大距離為7.(3)作射線FE交BD于點(diǎn)M,∵BE=CE,EF⊥BC,是劣弧,∴所在圓的圓心在射線FE上,假設(shè)圓心為O,半徑為r,連接OC,則OC=r,OE=r?40,BE=CE=,在Rt△OEC中,r2=802+(r?40)2,解得:r=100,∴OE=OF?EF=60,過(guò)點(diǎn)D作DG⊥BC,垂足為G,∵AD∥BC,∠ADB=45°,∴∠DBC=45°,在Rt△BDG中,DG=BG=,在Rt△BEM中,ME=BE=80,∴ME>OE,∴點(diǎn)O在△BDC內(nèi)部,∴連接DO并延長(zhǎng)交于點(diǎn)P,則DP為入口D到上一點(diǎn)P的最大距離,∵在上任取一點(diǎn)異于點(diǎn)P的點(diǎn)P′,連接OP′,P′D,∴DP=OD+OP=OD+OP′>DP′,即DP>DP′,過(guò)點(diǎn)O作OH⊥DG,垂足為H,則OH=EG=40,DH=DG?HG=DG?OE=60,∴,∴DP=OD+r=,∴修建這條小路最多要花費(fèi)40×元.【考點(diǎn)】本題主要考查了圓的性質(zhì)與矩形性質(zhì)的綜合運(yùn)用,熟練掌握相關(guān)方法是解題關(guān)鍵.4、(1)半圓面積為157,扇形的面積為157;(2)能,16平方厘米.【解析】【分析】(1)我們運(yùn)用圓的面積公式求出半圓的面積,用扇形的面積公式求出扇形的面積即可.(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論