版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2026屆重慶第一中學(xué)高二數(shù)學(xué)第一學(xué)期期末監(jiān)測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,,,其中,,,則()A. B.C. D.2.在正方體的12條棱中任選3條,其中任意2條所在的直線都是異面直線的概率為()A. B.C. D.3.()A.-2 B.-1C.1 D.24.已知點(diǎn)是橢圓上的任意一點(diǎn),過點(diǎn)作圓:的切線,設(shè)其中一個(gè)切點(diǎn)為,則的取值范圍為()A. B.C. D.5.中國(guó)大運(yùn)河項(xiàng)目成功人選世界文化遺產(chǎn)名錄,成為中國(guó)第46個(gè)世界遺產(chǎn)項(xiàng)目,隨著對(duì)大運(yùn)河的保護(hù)與開發(fā),大運(yùn)河已成為北京城市副中心的一張亮麗的名片,也成為眾多旅游者的游覽目的地.今有一旅游團(tuán)乘游船從奧體公園碼頭出發(fā)順流而下至漕運(yùn)碼頭,又立即逆水返回奧體公園碼頭,已知游船在順?biāo)械乃俣葹?,在逆水中的速度為,則游船此次行程的平均速度V與的大小關(guān)系是()A. B.C. D.6.已知長(zhǎng)方體的底面ABCD是邊長(zhǎng)為8的正方形,長(zhǎng)方體的高為,則與對(duì)角面夾角的正弦值等于()A. B.C. D.7.?dāng)?shù)列滿足,則數(shù)列的前n項(xiàng)和為()A. B.C. D.8.拋物線的焦點(diǎn)到準(zhǔn)線的距離為()A. B.C. D.19.已知向量,,若與共線,則實(shí)數(shù)值為()A. B.C.1 D.210.函數(shù)的導(dǎo)函數(shù)為,對(duì)任意,都有成立,若,則滿足不等式的的取值范圍是()A. B.C D.11.已知、分別是橢圓的左、右焦點(diǎn),A是橢圓上一動(dòng)點(diǎn),圓C與的延長(zhǎng)線、的延長(zhǎng)線以及線段相切,若為其中一個(gè)切點(diǎn),則()A. B.C. D.與2的大小關(guān)系不確定12.?dāng)?shù)列的通項(xiàng)公式是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)解析式,則使得成立的的取值范圍是___________.14.設(shè)直線的方向向量分別為,若,則實(shí)數(shù)m等于___________.15.已知函數(shù)的導(dǎo)函數(shù)為,且對(duì)任意,,若,,則的取值范圍是___________.16.已知橢圓與坐標(biāo)軸依次交于A,B,C,D四點(diǎn),則四邊形ABCD面積為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè):實(shí)數(shù)滿足,:實(shí)數(shù)滿足.(1)若,且為真,求實(shí)數(shù)的取值范圍;(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.18.(12分)如圖,水平桌面上放置一個(gè)棱長(zhǎng)為4的正方體的水槽,水面高度恰為正方體棱長(zhǎng)的一半,在該正方體側(cè)面有一個(gè)小孔(小孔的大小忽略不計(jì))E,E點(diǎn)到CD的距離為3,若該正方體水槽繞CD傾斜(CD始終在桌面上).(1)證明圖2中的水面也是平行四邊形;(2)當(dāng)水恰好流出時(shí),側(cè)面與桌面所成的角的大小.19.(12分)已知橢圓左,右頂點(diǎn)分別是,,且,是橢圓上異于,的不同的兩點(diǎn)(1)若,證明:直線必過坐標(biāo)原點(diǎn);(2)設(shè)點(diǎn)是以為直徑的圓和以為直徑的圓的另一個(gè)交點(diǎn),記線段的中點(diǎn)為,若,求動(dòng)點(diǎn)的軌跡方程20.(12分)已知圓的圓心為,且圓經(jīng)過點(diǎn)(1)求圓的標(biāo)準(zhǔn)方程;(2)若圓:與圓恰有兩條公切線,求實(shí)數(shù)的取值范圍21.(12分)在平面直角坐標(biāo)系中,點(diǎn),直線軸,垂足為H,,圓N過點(diǎn)O,與l的公共點(diǎn)的軌跡為(1)求的方程;(2)過M的直線與交于A,B兩點(diǎn),若,求22.(10分)已知,是函數(shù)的兩個(gè)極值點(diǎn).(1)求的解析式;(2)記,,若函數(shù)有三個(gè)零點(diǎn),求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】先令函數(shù),求導(dǎo)判斷函數(shù)的單調(diào)性,并作出函數(shù)的圖像,由函數(shù)的單調(diào)性判斷,再由對(duì)稱性可得.【詳解】由,則,同理,,令,則,當(dāng);當(dāng),∴在上單調(diào)遞減,單調(diào)遞增,所以,即可得,又,,由圖的對(duì)稱性可知,.故選:C2、B【解析】根據(jù)正方體的性質(zhì)確定3條棱兩兩互為異面直線的情況數(shù),結(jié)合組合數(shù)及古典概率的求法,求任選3條其中任意2條所在的直線是異面直線的概率.【詳解】如下圖,正方體中如:中任意2條所在的直線都是異面直線,∴這樣的3條直線共有8種情況,∴任選3條,其中任意2條所在的直線都是異面直線的概率為.故選:B.3、A【解析】利用微積分基本定理計(jì)算得到答案.【詳解】.故選:.【點(diǎn)睛】本題考查了定積分的計(jì)算,意在考查學(xué)生的計(jì)算能力.4、B【解析】設(shè),得到,利用橢圓的范圍求解.【詳解】解:設(shè),則,,,因?yàn)?,所以,即,故選:B5、A【解析】求出平均速度V,進(jìn)而結(jié)合基本不等式求得答案.【詳解】易知,設(shè)奧運(yùn)公園碼頭到漕運(yùn)碼頭之間的距離為1,則游船順流而下的時(shí)間為,逆流而上的時(shí)間為,則平均速度,由基本不等式可得,而,當(dāng)且僅當(dāng)時(shí),兩個(gè)不等式都取得“=”,而根據(jù)題意,于是.故選:A.6、A【解析】建立空間直角坐標(biāo)系,結(jié)合空間向量的夾角坐標(biāo)公式即可求出線面角的正弦值.【詳解】連接,建立如圖所示的空間直角坐標(biāo)系∵底面是邊長(zhǎng)為8的正方形,,∴,,,因?yàn)?且,所以平面,∴,平面的法向量,∴與對(duì)角面所成角的正弦值為故選:A.7、D【解析】利用等差數(shù)列的前n項(xiàng)和公式得到,進(jìn)而得到,利用裂項(xiàng)相消法求和.【詳解】依題意得:,,,故選:D8、B【解析】由可得拋物線標(biāo)椎方程為:,由焦點(diǎn)和準(zhǔn)線方程即可得解.【詳解】由可得拋物線標(biāo)準(zhǔn)方程為:,所以拋物線的焦點(diǎn)為,準(zhǔn)線方程為,所以焦點(diǎn)到準(zhǔn)線的距離為,故選:B【點(diǎn)睛】本題考了拋物線標(biāo)準(zhǔn)方程,考查了焦點(diǎn)和準(zhǔn)線相關(guān)基本量,屬于基礎(chǔ)題.9、D【解析】根據(jù)空間向量共線有,,結(jié)合向量的坐標(biāo)即可求的值.【詳解】由題設(shè),有,,則,可得.故選:D10、C【解析】構(gòu)造函數(shù),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,將所求不等式變形為,結(jié)合函數(shù)的單調(diào)性即可得解.【詳解】對(duì)任意,都有成立,即令,則,所以函數(shù)在上單調(diào)遞增不等式即,即因?yàn)?,所以所以,,解得,所以不等式的解集為故選:C.11、A【解析】由題意知,圓C是的旁切圓,點(diǎn)是圓C與軸的切點(diǎn),設(shè)圓C與直線的延長(zhǎng)線、分別相切于點(diǎn)、,由切線的性質(zhì)可知:,,,結(jié)合橢圓的定義,即可得出結(jié)果.【詳解】由題意知,圓C是的旁切圓,點(diǎn)是圓C與軸的切點(diǎn),設(shè)圓C與直線的延長(zhǎng)線、分別相切于點(diǎn)、,則由切線的性質(zhì)可知:,,,所以,所以,所以.故選A【點(diǎn)睛】本題主要考查圓與圓錐曲線的綜合,熟記橢圓的定義,以及切線的性質(zhì)即可,屬于??碱}型.12、C【解析】根據(jù)數(shù)列前幾項(xiàng),歸納猜想出數(shù)列的通項(xiàng)公式.【詳解】依題意,數(shù)列的前幾項(xiàng)為:;;;……則其通項(xiàng)公式.故選C.【點(diǎn)睛】本小題主要考查歸納推理,考查數(shù)列通項(xiàng)公式的猜想,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意先判斷函數(shù)為偶函數(shù),再利用的導(dǎo)函數(shù)判斷在上單調(diào)遞增,根據(jù)偶函數(shù)的對(duì)稱性得上單調(diào)遞減.要使成立,即,解不等式即可得到答案.【詳解】,,為偶函數(shù),當(dāng)時(shí),,故函數(shù)在上單調(diào)遞增.為偶函數(shù),在上單調(diào)遞減.要使成立,即.故答案為:.14、2【解析】根據(jù)向量垂直與數(shù)量積的等價(jià)關(guān)系,,計(jì)算即可.【詳解】因?yàn)?,則其方向向量,,解得.故答案為:2.15、【解析】構(gòu)造函數(shù),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,將所求不等式變形為,結(jié)合函數(shù)的單調(diào)性可得解.【詳解】構(gòu)造函數(shù),則,故函數(shù)在上單調(diào)遞減,由已知可得,由可得,可得.故答案為:.16、【解析】根據(jù)橢圓的方程,求得頂點(diǎn)的坐標(biāo),結(jié)合菱形的面積公式,即可求解.【詳解】由題意,橢圓,可得,可得,所以橢圓與坐標(biāo)軸的交點(diǎn)分別為,此時(shí)構(gòu)成的四邊形為菱形,則面積為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)首先分別求出、為真時(shí)參數(shù)的取值范圍,再由為真,取并集即可;(2)首先解一元二次不等式,依題意是的必要不充分條件,則可推出,而不能推出,即可得到不等式組,解得即可;【小問1詳解】解:當(dāng)時(shí),,即,解得,即為真時(shí),實(shí)數(shù)的取值范圍為實(shí)數(shù)滿足,即,解得:,即為真時(shí),實(shí)數(shù)的取值范圍為因,所以,即;【小問2詳解】解:由,即,所以,因?yàn)槭堑某浞植槐匾獥l件,所以是的必要不充分條件,則可推出,而不能推出,則,解得;18、(1)證明見解析(2)【解析】(1)由水的體積得出,進(jìn)而得出,,從而證明圖2中的水面也是平行四邊形;(2)在平面內(nèi),過點(diǎn)作,交于,由四邊形是平行四邊形,得出側(cè)面與桌面所成的角即側(cè)面與水面所成的角,再由直角三角形的邊角關(guān)系得出其夾角.【小問1詳解】由題意知,水的體積為,如圖所示,設(shè)正方體水槽傾斜后,水面分別與棱,,,交于,,,,則,水的體積為,,即,,故四邊形為平行四邊形,即,且又,,,四邊形為平行四邊形,即圖2中的水面也是平行四邊形;【小問2詳解】在平面內(nèi),過點(diǎn)作,交于,則四邊形是平行四邊形,,,側(cè)面與桌面所成的角即側(cè)面與水面所成的角,即側(cè)面與平面所成的角,即為所求,而,在中,,側(cè)面與桌面所成角的為19、(1)證明見解析;(2).【解析】(1)設(shè),首先證明,從而可得到,即得到;進(jìn)而可得到四邊形為平行四邊形;再根據(jù)為的中點(diǎn),即可證明直線必過坐標(biāo)原點(diǎn)(2)設(shè)出直線的方程,與橢圓方程聯(lián)立,消元,寫韋達(dá);根據(jù)條件可求出直線MN過定點(diǎn),從而可得到過定點(diǎn),進(jìn)而可得到點(diǎn)在以為直徑的圓上運(yùn)動(dòng),從而可求出動(dòng)點(diǎn)的軌跡方程【小問1詳解】設(shè),則,即因?yàn)?,,所以因?yàn)?,所以,所?同理可證.因?yàn)?,,所以四邊形為平行四邊形,因?yàn)闉榈闹悬c(diǎn),所以直線必過坐標(biāo)原點(diǎn)【小問2詳解】當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,,聯(lián)立,整理得,則,,.因?yàn)?,所以,因?yàn)?,解得?當(dāng)時(shí),直線的方程為過點(diǎn)A,不滿足題意,所以舍去;所以直線的方程為,所以直線過定點(diǎn).當(dāng)直線的斜率不存在時(shí),因?yàn)?,所以直線的方程為,經(jīng)驗(yàn)證,符合題意.故直線過定點(diǎn).因?yàn)闉榈闹悬c(diǎn),為的中點(diǎn),所以過定點(diǎn).因?yàn)榇怪逼椒止蚕?,所以點(diǎn)在以為直徑的圓上運(yùn)動(dòng),該圓的半徑,圓心坐標(biāo)為,故動(dòng)點(diǎn)的軌跡方程為20、(1);(2).【解析】(1)根據(jù)給定條件求出圓C的半徑,再直接寫出方程作答.(2)由給定條件可得圓C與圓O相交,由此列出不等式求解作答.【小問1詳解】依題意,圓C的半徑,所以圓的標(biāo)準(zhǔn)方程是:.【小問2詳解】圓:的圓心,半徑為,因圓與圓恰有兩條公切線,則有圓O與圓C相交,即,而,因此有,解得,所以實(shí)數(shù)的取值范圍是.21、(1);(2).【解析】(1)設(shè)出圓N與l的公共點(diǎn)坐標(biāo),再探求出點(diǎn)N的坐標(biāo),并由圓的性質(zhì)列出方程化簡(jiǎn)即得.(2)設(shè)出直線AB的方程,與的方程聯(lián)立,結(jié)合已知條件并借助韋達(dá)定理計(jì)算作答.【小問1詳解】設(shè)為圓N與l的公共點(diǎn),而直線軸,垂足為H,則,又,,于是得,因O,P在圓N上,即,則有,化簡(jiǎn)整理得:,所以的方程為.【小問2詳解】顯然直線AB不垂直于y軸,設(shè)直線AB的方程為,,由消去x并整理得:,則,因?yàn)?,則點(diǎn)A到x軸距離是點(diǎn)B到x軸距離的2倍,即,由解得或,則有,因此有,所以.22、(1);(2)【解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職(會(huì)計(jì))會(huì)計(jì)綜合實(shí)訓(xùn)試題及答案
- 2025年高職電氣自動(dòng)化技術(shù)(電氣設(shè)備安裝與調(diào)試)試題及答案
- 2026年午餐肉食品加工機(jī)維修(加工機(jī)調(diào)試技術(shù))試題及答案
- 2025年中職(化工技術(shù)應(yīng)用)化工單元操作專項(xiàng)測(cè)試試題及答案
- 2025年大學(xué)大一(交通運(yùn)輸)航空運(yùn)輸學(xué)基礎(chǔ)階段測(cè)試試題及答案
- 2025年中職農(nóng)產(chǎn)品儲(chǔ)存(農(nóng)產(chǎn)品儲(chǔ)存技術(shù))試題及答案
- 2025年大學(xué)藥理學(xué)實(shí)驗(yàn)(藥理實(shí)驗(yàn)操作)試題及答案
- 2025年高職建筑裝飾工程技術(shù)(裝飾施工實(shí)操)試題及答案
- 2025年中職生態(tài)學(xué)(生態(tài)學(xué)基礎(chǔ))試題及答案
- 2025年中職工業(yè)機(jī)器人(編程進(jìn)階實(shí)操)試題及答案
- 麻疹知識(shí)培訓(xùn)內(nèi)容總結(jié)
- 2025年事業(yè)單位招聘考試綜合類專業(yè)知識(shí)試題(體育)
- 安全生產(chǎn)責(zé)任保險(xiǎn)培訓(xùn)課件
- 機(jī)械工程的奧秘之旅-揭秘機(jī)械工程的魅力與價(jià)值
- 《益生菌與藥食同源植物成分協(xié)同作用評(píng)價(jià)》-編制說明 征求意見稿
- 送貨單回簽管理辦法
- 魯科版高中化學(xué)必修第一冊(cè)全冊(cè)教案
- 原發(fā)性高血壓患者糖代謝異常:現(xiàn)狀、關(guān)聯(lián)與防治探索
- 2025年存算一體芯片能效比:近內(nèi)存計(jì)算架構(gòu)突破與邊緣AI設(shè)備部署成本
- 國(guó)有企業(yè)服務(wù)采購操作規(guī)范TCFLP 0054-2022
- 2025年獸醫(yī)公共衛(wèi)生學(xué)考試試題(附答案)
評(píng)論
0/150
提交評(píng)論