版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2026屆山東省青島市青島第二中學(xué)數(shù)學(xué)高二上期末聯(lián)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列事件:①連續(xù)兩次拋擲同一個骰子,兩次都出現(xiàn)2點;②某人買彩票中獎;③從集合中任取兩個不同元素,它們的和大于2;④在標(biāo)準(zhǔn)大氣壓下,水加熱到90℃時會沸騰.其中是隨機事件的個數(shù)是()A.1 B.2C.3 D.42.直線在y軸上的截距是A. B.C. D.3.在平面區(qū)域內(nèi)隨機投入一點P,則點P的坐標(biāo)滿足不等式的概率是()A. B.C. D.4.已知函數(shù)只有一個零點,則實數(shù)的取值范圍是()A B.C. D.5.某中學(xué)舉行黨史學(xué)習(xí)教育知識競賽,甲隊有、、、、、共名選手其中名男生名女生,按比賽規(guī)則,比賽時現(xiàn)場從中隨機抽出名選手答題,則至少有名女同學(xué)被選中的概率是()A. B.C. D.6.已知三棱錐的各頂點都在同一球面上,且平面,若該棱錐的體積為,,,,則此球的表面積等于()A. B.C. D.7.已知直線與垂直,則為()A.2 B.C.-2 D.8.已知,是雙曲線的左,右焦點,經(jīng)過點且與x軸垂直的直線與雙曲線的一條漸近線相交于點A,且A在第三象限,四邊形為平行四邊形,為直線的傾斜角,若,則該雙曲線離心率的取值范圍是()A. B.C. D.9.若數(shù)列1,a,b,c,9是等比數(shù)列,則實數(shù)b的值為()A.5 B.C.3 D.3或10.設(shè),則“”是“直線與直線平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件11.德國數(shù)學(xué)家萊布尼茨是微積分的創(chuàng)立者之一,他從幾何問題出發(fā),引進微積分概念.在研究切線時認識到,求曲線的切線的斜率依賴于縱坐標(biāo)的差值和橫坐標(biāo)的差值,以及當(dāng)此差值變成無限小時它們的比值,這也正是導(dǎo)數(shù)的幾何意義.設(shè)是函數(shù)的導(dǎo)函數(shù),若,且對,,且總有,則下列選項正確的是()A. B.C. D.12.已知圓與圓沒有公共點,則實數(shù)a的取值范圍為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若不同的平面的一個法向量分別為,,則與的位置關(guān)系為___________.14.已知橢圓的左、右頂點分別為A,B,橢圓C的左、右焦點分別為F1,F(xiàn)2,點為橢圓C的下頂點,直線MA與MB的斜率之積為.(1)求橢圓C的方程;(2)設(shè)點P,Q為橢圓C上位于x軸下方的兩點,且,求四邊形面積的最大值.15.直線的傾斜角的大小是_________.16.如圖,在平行六面體中,底面是邊長為1的正方形,的長度為2,且,則的長度為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)我們知道,裝同樣體積的液體容器中,如果容器的高度一樣,那么側(cè)面所需的材料就以圓柱形的容器最省.所以汽油桶等裝液體的容器大都是圓柱形的,某臥式油罐如圖1所示,它垂直于軸的截面如圖2所示,已知截面圓的半徑是1米,弧的長為米表示劣弧與弦所圍成陰影部分的面積.(1)請寫出函數(shù)表達式;(2)用求導(dǎo)的方法證明.18.(12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直,,,.(1)求點C到平面的距離;(2)線段上是否存在點F,使與平面所成角正弦值為,若存在,求出,若不存在,說明理由.19.(12分)已知數(shù)列是公比為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列通項公式;(2)若,求數(shù)列的前項和.20.(12分)已知函數(shù).(1)求曲線在點處的切線的方程.(2)若直線為曲線切線,且經(jīng)過坐標(biāo)原點,求直線的方程及切點坐標(biāo).21.(12分)如圖是一拋物線型機械模具的示意圖,該模具是拋物線的一部分且以拋物線的軸為對稱軸,已知頂點深度4cm,口徑長為12cm(1)以頂點為坐標(biāo)原點建立平面直角坐標(biāo)系(如圖),求該拋物線的標(biāo)準(zhǔn)方程;(2)為滿足生產(chǎn)的要求,需將磨具的頂點深度減少1cm,求此時該磨具的口徑長22.(10分)如圖,在直三棱柱中,,,,分別為,,的中點,點在棱上,且,,.(1)求證:平面;(2)求證:平面平面;(3)求平面與平面的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】因為隨機事件指的是在一定條件下,可能發(fā)生,也可能不發(fā)生的事件,只需逐一判斷4個事件哪一個符合這種情況即可【詳解】解:連續(xù)兩次拋擲同一個骰子,兩次都出現(xiàn)2點這一事件可能發(fā)生也可能不發(fā)生,①是隨機事件某人買彩票中獎這一事件可能發(fā)生也可能不發(fā)生,②是隨機事件從集合,2,中任取兩個元素,它們的和必大于2,③是必然事件在標(biāo)準(zhǔn)大氣壓下,水加熱到時才會沸騰,④是不可能事件故隨機事件有2個,故選:B2、D【解析】在y軸上的截距只需令x=0求出y的值即可得出.【詳解】令x=0,則y=-2,即直線在y周上的截距為-2,故選D.3、A【解析】根據(jù)題意作出圖形,進而根據(jù)幾何概型求概率的方法求得答案.【詳解】根據(jù)題意作出示意圖,如圖所示:于,所求概率.故選:A.4、B【解析】將題目轉(zhuǎn)化為函數(shù)的圖像與的圖像只有一個交點,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,作出圖像,利用數(shù)形結(jié)合求出的取值范圍.【詳解】由函數(shù)只有一個零點,等價于函數(shù)的圖像與的圖像只有一個交點,,求導(dǎo),令,得當(dāng)時,,函數(shù)在上單調(diào)遞減;當(dāng)時,,函數(shù)在上單調(diào)遞增;當(dāng)時,,函數(shù)在上單調(diào)遞減;故當(dāng)時,函數(shù)取得極小值;當(dāng)時,函數(shù)取得極大值;作出函數(shù)圖像,如圖所示,由圖可知,實數(shù)的取值范圍是故選:B【點睛】方法點睛:已知函數(shù)有零點(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進而構(gòu)造兩個函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.5、D【解析】現(xiàn)場選名選手,共種情況,設(shè),,,四位同學(xué)為男同學(xué)則沒有女同學(xué)被選中的情況,共有6種,利用對立事件進行求解,即可得到答案;【詳解】現(xiàn)場選名選手,基本事件有:,,,,,,,,,,,,,,共種情況,不妨設(shè),,,四位同學(xué)為男同學(xué)則沒有女同學(xué)被選中的情況是:,,,,,共種,則至少有一名女同學(xué)被選中的概率為.故選:.6、D【解析】由條件確定三棱錐的外接球的球心位置及球的半徑,再利用球的表面積公式求外接球的表面積.【詳解】由已知,,,可得三棱錐的底面是直角三角形,,由平面可得就是三棱錐外接球的直徑,,,即,則,故三棱錐外接球的半徑為,所以三棱錐外接球的表面積為故選:D.【點睛】與球有關(guān)的組合體問題,一種是內(nèi)切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,如球內(nèi)切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.7、A【解析】利用一般式中直線垂直的系數(shù)關(guān)系列式求解.【詳解】因為直線與垂直,故選:A.8、B【解析】根據(jù)雙曲線的幾何性質(zhì)和平行四邊形的性質(zhì)可知也在雙曲線的漸近線上,且在第一象限,從而由可知軸,所以在直角三角形中,,由,可得的范圍,進而轉(zhuǎn)化為,的不等式,結(jié)合可得離心率的取值范圍【詳解】解:因為經(jīng)過點且與軸垂直的直線與雙曲線的一條漸近線相交于點,且在第三象限,四邊形為平行四邊形,所以由雙曲線的對稱性可知也在雙曲線的漸近線上,且在第一象限,由軸,可知軸,所以,在直角三角形中,,因為,所以,,即,所以,即,即,故,所以.故選:B9、C【解析】根據(jù)等比數(shù)列的定義,利用等比數(shù)列的通項公式求解【詳解】解:設(shè)該等比數(shù)列公比為q,∵數(shù)列1,a,b,c,9是等比數(shù)列,∴,,∴,故,解得,∴故選:C10、A【解析】根據(jù)兩直線平行的充要條件求出a的值,然后可判斷.【詳解】當(dāng)時,,所以兩直線平行;若兩直線平行,則且,解得或,所以,“”是“直線與直線平行”的充分不必要條件.故選:A11、D【解析】由,得在上單調(diào)遞增,并且由的圖象是向上凸,進而判斷選項.【詳解】由,得在上單調(diào)遞增,因為,所以,故A不正確;對,,且,總有,可得函數(shù)的圖象是向上凸,可用如圖的圖象來表示,由表示函數(shù)圖象上各點處的切線的斜率,由函數(shù)圖象可知,隨著的增大,的圖象越來越平緩,即切線的斜率越來越小,所以,故B不正確;,表示點與點連線的斜率,由圖可知,所以D正確,C不正確.故選:D.【點睛】本題考查以數(shù)學(xué)文化為背景,導(dǎo)數(shù)的幾何意義,根據(jù)函數(shù)的單調(diào)性比較函數(shù)值的大小,屬于中檔題型.12、B【解析】求出圓、的圓心和半徑,再由兩圓沒有公共點列不等式求解作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,,因圓、沒有公共點,則有或,即或,又,解得或,所以實數(shù)a的取值范圍為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、平行【解析】根據(jù)題意得到,得出,即可得到平面與的位置關(guān)系.【詳解】由題意,平面的一個法向量分別為,,可得,所以,所以,即平面與的位置關(guān)系為平行.故答案為:平行14、(1)(2)【解析】(1)由斜率之積求得,再由已知條件得,從而得橢圓方程;(2)延長QF2交橢圓于N點,連接,,設(shè)直線,,.直線方程代入橢圓方程,應(yīng)用韋達定理得,結(jié)合不等式的性質(zhì)、函數(shù)的單調(diào)性可得的范圍,再計算出四邊形面積得結(jié)論【小問1詳解】由題知:,,,又,∴橢圓.【小問2詳解】延長QF2交橢圓于N點,連接,,如下圖所示:,∴設(shè)直線,,.由,得,,,.,由勾形函數(shù)的單調(diào)性得,根據(jù)對稱性得:,且,,∴四邊形面積的最大值為.15、【解析】由題意,即,∴考點:直線的傾斜角.16、【解析】設(shè)一組基地向量,將目標(biāo)用基地向量表示,然后根據(jù)向量的運算法則運算即可【詳解】設(shè),則有:則有:根據(jù),解得:故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)證明見解析【解析】(1)由弧長公式得,根據(jù)即可求解;(2)利用導(dǎo)數(shù)判斷出在上單調(diào)遞增,即可證明.【小問1詳解】由弧長公式得,于是,【小問2詳解】cos,顯然在上單調(diào)遞增,于是.18、(1)(2)存在,1【解析】(1)由題意建立空間直角坐標(biāo)系,求得平面向量的法向量和相應(yīng)點的坐標(biāo),利用點面距離公式即可求得點面距離(2)假設(shè)滿足題意的點存在且滿足,由題意得到關(guān)于的方程,解方程即可確定滿足題意的點是否存在【小問1詳解】解:如圖所示,取中點,連結(jié),,因為三角形是等腰直角三角形,所以,因為面面,面面面,所以平面,又因為,所以四邊形是矩形,可得,則,建立如圖所示的空間直角坐標(biāo)系,則:據(jù)此可得,設(shè)平面的一個法向量為,則,令可得,從而,又,故求點到平面的距離【小問2詳解】解:假設(shè)存在點,,滿足題意,點在線段上,則,即:,,,,,據(jù)此可得:,,從而,,,,設(shè)與平面所成角所成的角為,則,整理可得:,解得:或(舍去)據(jù)此可知,存在滿足題意的點,點為的中點,即19、(1);(2).【解析】(1)根據(jù)題意,通過解方程求出公比,即可求解;(2)根據(jù)題意,求出,結(jié)合組合法求和,即可求解.【小問1詳解】根據(jù)題意,設(shè)公比為,且,∵,,∴,解得或(舍),∴.【小問2詳解】根據(jù)題意,得,故,因此.20、(1);(2)直線的方程為,切點坐標(biāo)為.【解析】(1)先求導(dǎo)數(shù),再根據(jù)導(dǎo)數(shù)幾何意義得切線斜率,最后根據(jù)點斜式得結(jié)果,(2)設(shè)切點,根據(jù)導(dǎo)數(shù)幾何意義得切線斜率,根據(jù)點斜式得切線方程,再根據(jù)切線過坐標(biāo)原點解得結(jié)果.【詳解】(1).所以在點處的切線的斜率,∴切線的方程為;(2)設(shè)切點為,則直線的斜率為,所以直線的方程為:,所以又直線過點,∴,整理,得,∴,∴,的斜率,∴直線的方程為,切點坐標(biāo)為.【點睛】本題考查導(dǎo)數(shù)幾何意義以及利用導(dǎo)數(shù)求切線方程,考查基本分析求解能力,屬基礎(chǔ)題.21、(1)(2)cm【解析】(1)設(shè)拋物線的標(biāo)準(zhǔn)方程為,由題意可得拋物線過點,將此點代入方程中可求出的值,從而可得拋物線方程,(2)設(shè)此時的口徑長為,則拋物線過點,代入拋物線方程可求出的值,從而可求得答案【小問1詳解】由題意,建立如圖所示的平面直角坐標(biāo)系,設(shè)拋物線的標(biāo)準(zhǔn)方程為,因為頂點深度4,口徑長為12,所以該拋物線過點,所以,得,所以拋物線方程為;【小問2詳解】若將磨具的頂點深度減少,設(shè)此時的口徑長為,則可得,得,所以此時該磨具的口徑長22、(1)見解析(2)見解析(3)【解析】(1)利用勾股定理證得,證明平面,根據(jù)線面垂直的性質(zhì)證得,再根據(jù)線面垂直的判定定理即可得證;(2)取的中點,連接,可得為的中點,證明,四邊形是平行四邊形,可得,再
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 淮南市壽縣輔警招聘考試題庫 (答案+解析)
- 耳鼻咽喉科試題及答案
- 醫(yī)療機構(gòu)面試題型及答案
- 煤礦安全生產(chǎn)管理人員考試及答案
- 消防設(shè)施操作員(初級)習(xí)題(含參考答案)
- 基礎(chǔ)護理習(xí)題庫(附答案)
- 商品選品員突發(fā)故障應(yīng)對考核試卷及答案
- 成人護理學(xué)試題及答案
- 護理組感染防控考核試題及答案
- 河南黨建考試題庫及答案
- 2025-2026學(xué)年北京市西城區(qū)初二(上期)期末考試物理試卷(含答案)
- 河南省2025年普通高等學(xué)校對口招收中等職業(yè)學(xué)校畢業(yè)生考試語文試題 答案
- 腦動脈供血不足的護理查房
- 《中醫(yī)藥健康知識講座》課件
- 中國地級市及各省份-可編輯標(biāo)色地圖
- 產(chǎn)科品管圈成果匯報降低產(chǎn)后乳房脹痛發(fā)生率課件
- 急性消化道出血的急診處理
- 馬口鐵印鐵制罐工藝流程詳解課件
- 狼蒲松齡原文及翻譯
- 預(yù)應(yīng)力管樁-試樁施工方案
- GB/T 3500-1998粉末冶金術(shù)語
評論
0/150
提交評論