2026屆河南省平頂山許昌濟源高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第1頁
2026屆河南省平頂山許昌濟源高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第2頁
2026屆河南省平頂山許昌濟源高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第3頁
2026屆河南省平頂山許昌濟源高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第4頁
2026屆河南省平頂山許昌濟源高二上數(shù)學期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2026屆河南省平頂山許昌濟源高二上數(shù)學期末學業(yè)水平測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.蟋蟀鳴叫可以說是大自然優(yōu)美、和諧的音樂,殊不知蟋蟀鳴叫的頻率(每分鐘鳴叫的次數(shù))與氣溫(單位:℃)存在著較強的線性相關(guān)關(guān)系.某地觀測人員根據(jù)如表的觀測數(shù)據(jù),建立了關(guān)于的線性回歸方程,則下列說法不正確的是()(次數(shù)/分鐘)2030405060(℃)2527.52932.536A.的值是20B.變量,呈正相關(guān)關(guān)系C.若的值增加1,則的值約增加0.25D.當蟋蟀52次/分鳴叫時,該地當時的氣溫預(yù)報值為33.5℃2.已知定義在區(qū)間上的函數(shù),,若以上兩函數(shù)的圖像有公共點,且在公共點處切線相同,則m的值為()A.2 B.5C.1 D.03.如果一個矩形長與寬的比值為,那么稱該矩形為黃金矩形.如圖,已知是黃金矩形,,分別在邊,上,且也是黃金矩形.若在矩形內(nèi)任取一點,則該點取自黃金矩形內(nèi)的概率為()A. B.C. D.4.已知圓,若存在過點的直線與圓C相交于不同兩點A,B,且,則實數(shù)a的取值范圍是()A. B.C. D.5.已知雙曲線:的左、右焦點分別為,,過點且斜率為的直線與雙曲線在第二象限的交點為,若,則雙曲線的離心率是()A B.C. D.6.化學中,將構(gòu)成粒子(原子、離子或分子)在空間按一定規(guī)律呈周期性重復(fù)排列構(gòu)成的固體物質(zhì)稱為晶體.在結(jié)構(gòu)化學中,可將晶體結(jié)構(gòu)截分為一個個包含等同內(nèi)容的基本單位,這個基本單位叫做晶胞.已知鈣、鈦、氧可以形成如圖所示的立方體晶胞(其中Ti原子位于晶胞的中心,Ca原子均在頂點位置,O原子位于棱的中點).則圖中原子連線BF與所成角的余弦值為()A. B.C. D.7.下列命題中,正確的是()A.若a>b,c>d,則ac>bd B.若ac>bc,則a<bC.若a>b,c>d,則a﹣c>b﹣d D.若,則a<b8.雙曲線的虛軸長為()A. B.C.3 D.69.已知,則“”是“”的()A.充分不必要條件 B.充要條件C.必要不充分條件 D.既不充分也不必要條件10.如圖,正四棱柱是由四個棱長為1的小正方體組成的,是它的一條側(cè)棱,是它的上底面上其余的八個點,則集合的元素個數(shù)()A.1 B.2C.4 D.811.平面與平面平行的充分條件可以是()A.平面內(nèi)有一條直線與平面平行B.平面內(nèi)有兩條直線分別與平面平行C.平面內(nèi)有無數(shù)條直線分別與平面平行D平面內(nèi)有兩條相交直線分別與平面平行12.函數(shù)圖象的一個對稱中心為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若橢圓的焦點在軸上,且長軸長是短軸長的2倍,則______.14.若雙曲線的漸近線為,則其離心率的值為_______.15.已知拋物線,則的準線方程為______.16.已知p:≤0,q:4x+2x-m≤0,若p是q的充分條件,則實數(shù)m的取值范圍是________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知公差不為零的等差數(shù)列的前項和為,,,成等比數(shù)列且滿足________.請在①;②;③,這三個條件中任選一個補充在上面題干中,并回答以下問題.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.18.(12分)如圖,在三棱柱中,側(cè)棱垂直于底面,分別是的中點(1)求證:平面平面;(2)求證:平面;(3)求三棱錐體積19.(12分)已知等比數(shù)列的前項和為,且,.(1)求的通項公式;(2)求.20.(12分)已知橢圓的離心率為,過左焦點且垂直于長軸的弦長為.(1)求橢圓的標準方程;(2)點為橢圓的長軸上的一個動點,過點且斜率為的直線交橢圓于兩點,證明為定值.21.(12分)已知函數(shù).(1)證明:;(2)若函數(shù)有兩個零點,求實數(shù)的取值范圍.22.(10分)已知函數(shù)滿足.(1)求的解析式,并判斷其奇偶性;(2)若對任意,不等式恒成立,求實數(shù)a的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)樣本中心過經(jīng)過線性回歸方程、正相關(guān)的性質(zhì)和線性回歸方程的意義進行判斷即可.【詳解】由題意,得,,則,故A正確;由線性回歸方程可知,,變量,呈正相關(guān)關(guān)系,故B正確;若的值增加1,則的值約增加0.25,故C正確;當時,,故D錯誤.故選:D.2、C【解析】設(shè)兩曲線與公共點為,分別求得函數(shù)的導(dǎo)數(shù),根據(jù)兩函數(shù)的圖像有公共點,且在公共點處切線相同,列出等式,求得公共點的坐標,代入函數(shù),即可求解.【詳解】根據(jù)題意,設(shè)兩曲線與公共點為,其中,由,可得,則切線的斜率為,由,可得,則切線斜率為,因為兩函數(shù)的圖像有公共點,且在公共點處切線相同,所以,解得或(舍去),又由,即公共點的坐標為,將點代入,可得.故選:C.3、B【解析】由幾何概型的面積型,只需求小矩形的面積和大矩形面積之比.【詳解】由題意,不妨設(shè),則,又也是黃金矩形,則,又,解得,于是大矩形面積為:,小矩形的面積為,由幾何概型的面積型,概率為若在矩形內(nèi)任取一點,則該點取自黃金矩形內(nèi)的概率為:.故選:B.4、D【解析】根據(jù)圓的割線定理,結(jié)合圓的性質(zhì)進行求解即可.【詳解】圓的圓心坐標為:,半徑,由圓的割線定理可知:,顯然有,或,因為,所以,于是有,因為,所以,而,或,所以,故選:D5、B【解析】根據(jù)得到三角形為等腰三角形,然后結(jié)合雙曲線的定義得到,設(shè),進而作,得出,由此求出結(jié)果【詳解】因為,所以,即所以,由雙曲線的定義,知,設(shè),則,易得,如圖,作,為垂足,則,所以,即,即雙曲線的離心率為.故選:B6、C【解析】如圖所示,以為坐標原點,所在的直線分別為軸,建立直角坐標系,設(shè)立方體的棱長為,求出的值,即可得到答案;【詳解】如圖所示,以為坐標原點,所在的直線分別為軸,建立直角坐標系,設(shè)立方體的棱長為,則,,,,連線與所成角的余弦值為故選:C.7、D【解析】運用不等式性質(zhì),結(jié)合特殊值法,對選項注逐一判斷正誤即可.【詳解】選項A中,若,時,則成立,否則,若,則,顯然錯誤,故選項A錯誤;選項B中,若,,則能推出,否則,若,則,顯然錯誤,故選項B錯誤;選項C中,若,則,顯然錯誤,故選項C錯誤;選項D中,若,顯然,由不等式性質(zhì)知不等式兩邊同乘以一個正數(shù),不等式不變號,即.故選:D8、D【解析】根據(jù)題意,由雙曲線的方程求出的值,即可得答案【詳解】因為,所以,所以雙曲線的虛軸長為.故選:D.9、B【解析】求得中的取值范圍,由此確定充分、必要條件.【詳解】,,所以“”是“”的充要條件.故選:B10、A【解析】用空間直角坐標系看正四棱柱,根據(jù)向量數(shù)量積進行計算即可.【詳解】建立空間直角坐標系,為原點,正四棱柱的三個邊的方向分別為軸、軸和看軸,如右圖示,,設(shè),則AB所以集合,元素個數(shù)為1.故選:A.11、D【解析】根據(jù)平面與平面平行的判定定理可判斷.【詳解】對A,若平面內(nèi)有一條直線與平面平行,則平面與平面可能平行或相交,故A錯誤;對B,若平面內(nèi)有兩條直線分別與平面平行,若這兩條直線平行,則平面與平面可能平行或相交,故B錯誤;對C,若平面內(nèi)有無數(shù)條直線分別與平面平行,若這無數(shù)條直線互相平行,則平面與平面可能平行或相交,故C錯誤;對D,若平面內(nèi)有兩條相交直線分別與平面平行,則根據(jù)平面與平面平行的判定定理可得平面與平面平行,故D正確.故選:D.12、D【解析】要求函數(shù)圖象的一個對稱中心的坐標,關(guān)鍵是求函數(shù)時的的值;令,根據(jù)余弦函數(shù)圖象性質(zhì)可得,此時可求出,然后對進行取值,進而結(jié)合選項即可得到答案.【詳解】解:令,則解得,即,圖象的對稱中心為,令,即可得到圖象的一個對稱中心為故選:D【點睛】本題考查三角函數(shù)的對稱中心,正弦函數(shù)的對稱中心為,余弦函數(shù)的對稱中心為.二、填空題:本題共4小題,每小題5分,共20分。13、4【解析】根據(jù)橢圓焦點在軸上方程的特征進行求解即可.【詳解】因為橢圓的焦點在軸上,所以有,因為長軸長是短軸長的2倍,所以有,故答案為:414、【解析】利用漸近線斜率為和雙曲線的關(guān)系可構(gòu)造關(guān)于的齊次方程,進而求得結(jié)果.【詳解】由漸近線方程可知:,即,,,(負值舍掉).故答案為:.【點睛】本題考查根據(jù)雙曲線漸近線方程求解離心率的問題,關(guān)鍵是利用漸進線的斜率構(gòu)造關(guān)于的齊次方程.15、##【解析】根據(jù)拋物線的方程求出的值即得解.【詳解】解:因為拋物線,所以,所以的準線方程為.故答案為:16、m≥6【解析】分別求出p,q成立的等價條件,利用p是q的充分條件,轉(zhuǎn)為當0<x≤1時,m大于等于的最大值,求出最值即可確定m的取值范圍【詳解】由,得0<x≤1,即p:0<x≤1由4x+2x﹣m≤0得4x+2x≤m因為,要使p是q的充分條件,則當0<x≤1時,m大于等于的最大值,令,則在上單調(diào)遞增,故當時取到最大值6,所以m≥6故答案為:m≥6【點睛】本題主要考查充分條件和必要條件的應(yīng)用,考查函數(shù)的最值,考查轉(zhuǎn)化的思想,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案見解析(2)【解析】(1)首先由,,成等比數(shù)列,求出,再由①或②或③求出數(shù)列的首項和公差,即可求得的通項公式;(2)求得的通項公式,結(jié)合裂項相消法求得.【小問1詳解】設(shè)等差數(shù)列的公差為,由,,成等比數(shù)列,可得,即,∵,故,選①:由,可得,解得,所以數(shù)列的通項公式為選②:由,可得,即,所以,解得,所以;選③:由,可得,即,所以,解得,所以;【小問2詳解】由(1)可得,所以.18、(1)證明見解析;(2)證明見解析;(3)【解析】(1)由直線與平面垂直證明直線與平行的垂直;(2)證明直線與平面平行;(3)求三棱錐的體積就用體積公式.(1)在三棱柱中,底面ABC,所以AB,又因為AB⊥BC,所以AB⊥平面,因為AB平面,所以平面平面.(2)取AB中點G,連結(jié)EG,F(xiàn)G,因為E,F(xiàn)分別是、的中點,所以FG∥AC,且FG=AC,因為AC∥,且AC=,所以FG∥,且FG=,所以四邊形為平行四邊形,所以EG,又因為EG平面ABE,平面ABE,所以平面.(3)因為=AC=2,BC=1,AB⊥BC,所以AB=,所以三棱錐的體積為:==.考點:本小題主要考查直線與直線、直線與平面、平面與平面的垂直與平行的證明;考查幾何體的體積的求解等基礎(chǔ)知識,考查同學們的空間想象能力、推理論證能力、運算求解能力、邏輯推理能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想19、(1)(2)【解析】(1)設(shè)的公比為,根據(jù)題意求得的值,即可求得的通項公式;(2)由(1)求得,得到,利用等比數(shù)列的求和公式,即可求解.【小問1詳解】解:設(shè)的公比為,因為,,則,又因為,解得,所以的通項公式為.【小問2詳解】解:由,可得,則,所以.20、(1);(2)證明見解析.【解析】(1)借助題設(shè)條件建立方程組求解;(2)依據(jù)題設(shè)運用直線與橢圓的位置關(guān)系探求.試題解析:(1)由,可得橢圓方程.(2)設(shè)的方程為,代入并整理得:.設(shè),,則,同理則.所以,是定值.考點:橢圓的標準方程幾何性質(zhì)及直線與橢圓的位置關(guān)系等有關(guān)知識的綜合運用【易錯點晴】本題考查的是橢圓的標準方程等基礎(chǔ)知識及直線與橢圓的位置關(guān)系等知識的綜合性問題.解答本題的第一問時,直接依據(jù)題設(shè)條件運用橢圓的幾何性質(zhì)和橢圓的有關(guān)概念建立方程組,進而求得橢圓的標準方程為;第二問的求解過程中,先設(shè)直線的方程為,再借助二次方程中根與系數(shù)之間的關(guān)系,依據(jù)坐標之間的關(guān)系進行計算探求,從而使得問題獲解.21、(1)證明見解析;(2).【解析】(1)令,求導(dǎo)得到函數(shù)的增區(qū)間為,減區(qū)間為,故,得到證明.(2),討論和兩種情況,計算函數(shù)的單調(diào)區(qū)間得到,解得答案.【詳解】(1)令,有,令可得,故函數(shù)的增區(qū)間為,減區(qū)間為,,故有.(2)由①當時,,此時函數(shù)的減區(qū)間為,沒有增區(qū)間;②當時,令可得,此時函數(shù)的增區(qū)間為,減區(qū)間為.若函數(shù)有兩個零點,必須且,可得,此時,又由,當時,由(1)有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論