甘肅省白銀市靖遠(yuǎn)第一中學(xué)2026屆高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第1頁
甘肅省白銀市靖遠(yuǎn)第一中學(xué)2026屆高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第2頁
甘肅省白銀市靖遠(yuǎn)第一中學(xué)2026屆高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第3頁
甘肅省白銀市靖遠(yuǎn)第一中學(xué)2026屆高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第4頁
甘肅省白銀市靖遠(yuǎn)第一中學(xué)2026屆高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

甘肅省白銀市靖遠(yuǎn)第一中學(xué)2026屆高一數(shù)學(xué)第一學(xué)期期末質(zhì)量檢測模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知曲線的圖像,,則下面結(jié)論正確的是()A.把上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線B.把上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C.把上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線D.把上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線2.函數(shù)的最大值與最小值分別為()A.3,-1 B.3,-2C.2,-1 D.2,-23.若一元二次不等式的解集為,則的值為()A. B.0C. D.24.設(shè),表示兩條直線,,表示兩個平面,則下列命題正確的是A.若,,則 B.若,,則C.若,,則 D.若,,則5.函數(shù)的部分圖象如圖所示,則的值為()A. B.C. D.6.設(shè)函數(shù)y=,當(dāng)x>0時,則y()A.有最大值4 B.有最小值4C有最小值8 D.有最大值87.已知函數(shù),則的值是()A. B.C. D.8.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知直線與平行,則實數(shù)的取值是A.-1或2 B.0或1C.-1 D.210.函數(shù)f(x)=x2-3x-4的零點是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知點是角終邊上一點,且,則的值為__________.12.函數(shù)關(guān)于直線對稱,設(shè),則________.13.下面有5個命題:①函數(shù)的最小正周期是②終邊在軸上的角的集合是③在同一坐標(biāo)系中,函數(shù)的圖象和函數(shù)的圖象有3個公共點④把函數(shù)的圖象向右平移得到的圖象⑤函數(shù)在上是減函數(shù)其中,真命題的編號是___________(寫出所有真命題的編號)14.在直角坐標(biāo)系內(nèi),已知是圓上一點,折疊該圓兩次使點分別與圓上不相同的兩點(異于點)重合,兩次的折痕方程分別為和,若圓上存在點,使,其中的坐標(biāo)分別為,則實數(shù)的取值集合為__________15.已知函數(shù),若,則實數(shù)_________16.已知,則的值是________,的值是________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.我們知道:設(shè)函數(shù)的定義域為,那么“函數(shù)的圖象關(guān)于原點成中心對稱圖形”的充要條件是“,”.有同學(xué)發(fā)現(xiàn)可以將其推廣為:設(shè)函數(shù)的定義域為,那么“函數(shù)的圖象關(guān)于點成中心對稱圖形”的充要條件是“,”.(1)判斷函數(shù)的奇偶性,并證明;(2)判斷函數(shù)的圖象是否為中心對稱圖形,若是,求出其對稱中心坐標(biāo);若不是,說明理由.18.化簡或求下列各式的值(1);(2)(lg5)2+lg5?lg20+19.在推導(dǎo)很多三角恒等變換公式時,我們可以利用平面向量的有關(guān)知識來研究,在一定程度上可以簡化推理過程.如我們就可以利用平面向量來推導(dǎo)兩角差的余弦公式:具體過程如下:如圖,在平面直角坐標(biāo)系內(nèi)作單位圓,以為始邊作角.它們的終邊與單位圓的交點分別為則,由向量數(shù)量積的坐標(biāo)表示,有設(shè)的夾角為,則,另一方面,由圖(1)可知,;由圖(2)可知,于是所以,也有;所以,對于任意角有:此公式給出了任意角的正弦、余弦值與其差角的余弦值之間的關(guān)系,稱為差角的余弦公式,簡記作.有了公式以后,我們只要知道的值,就可以求得的值了閱讀以上材料,利用圖(3)單位圓及相關(guān)數(shù)據(jù)(圖中是的中點),采取類似方法(用其他方法解答正確同等給分)解決下列問題:(1)判斷是否正確?(不需要證明)(2)證明:20.已知函數(shù)(I)求函數(shù)圖象的對稱軸方程;(II)求函數(shù)的最小正周期和值域.21.已知,求,的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】先將轉(zhuǎn)化為,再根據(jù)三角函數(shù)圖像變換的知識得出正確選項.【詳解】對于曲線,,要得到,則把上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,得到,再把得到的曲線向左平移個單位長度,得到,即得到曲線.故選:D.2、D【解析】分析:將化為,令,可得關(guān)于t的二次函數(shù),根據(jù)t的取值范圍,求二次函數(shù)的最值即可.詳解:利用同角三角函數(shù)關(guān)系化簡,設(shè),則,根據(jù)二次函數(shù)性質(zhì)當(dāng)時,y取最大值2,當(dāng)時,y取最小值.故選D.點睛:本題考查三角函數(shù)有關(guān)的最值問題,此類問題一般分為兩類,一種是解析式化為的形式,用換元法求解;另一種是將解析式化為的形式,根據(jù)角的范圍求解.3、C【解析】由不等式與方程的關(guān)系轉(zhuǎn)化為,從而解得【詳解】解:∵不等式kx2﹣2x+k<0的解集為{x|x≠m},∴,解得,k=﹣1,m=﹣1,故m+k=﹣2,故選:C4、D【解析】對選項進(jìn)行一一判斷,選項D為面面垂直判定定理.【詳解】對A,與可能異面,故A錯;對B,可能在平面內(nèi);對C,與平面可能平行,故C錯;對D,面面垂直判定定理,故選D.【點睛】本題考查空間中線、面位置關(guān)系,判斷一個命題為假命題,只要能舉出反例即可.5、C【解析】由函數(shù)的部分圖象得到函數(shù)的最小正周期,求出,代入求出值,則函數(shù)的解析式可求,取可得的值.【詳解】由圖象可得函數(shù)的最小正周期為,則.又,則,則,,則,,,則,,則,.故選:C.【點睛】方法點睛:根據(jù)三角函數(shù)的部分圖象求函數(shù)解析式的方法:(1)求、,;(2)求出函數(shù)的最小正周期,進(jìn)而得出;(3)取特殊點代入函數(shù)可求得的值.6、B【解析】由均值不等式可得答案.【詳解】由,當(dāng)且僅當(dāng),即時等號成立.當(dāng)時,函數(shù)的函數(shù)值趨于所以函數(shù)無最大值,有最小值4故選:B7、D【解析】根據(jù)題意,直接計算即可得答案.【詳解】解:由題知,,.故選:D8、A【解析】根據(jù)終邊相同的角的三角函數(shù)值相等,結(jié)合充分不必要條件的定義,即可得到答案;【詳解】,當(dāng),“”是“”的充分不必要條件,故選:A9、C【解析】因為兩直線的斜率都存在,由與平行得,當(dāng)時,兩直線重合,,故選C.10、D【解析】直接利用函數(shù)零點定義,解即可.【詳解】由,解得或,函數(shù)零點是.故選:.【點睛】本題主要考查的是函數(shù)零點的求法,直接利用定義可以求解,是基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由三角函數(shù)定義可得,進(jìn)而求解即可【詳解】由題,,所以,故答案為:【點睛】本題考查由三角函數(shù)值求終邊上的點,考查三角函數(shù)定義的應(yīng)用12、1【解析】根據(jù)正弦及余弦函數(shù)的對稱性的性質(zhì)可得的對稱軸為函數(shù)g(x)=3cos(ωx+φ)+1的對稱中心,即可求值.【詳解】∵函數(shù)f(x)的圖象關(guān)于x對稱∵f(x)=3sin(ωx+φ)的對稱軸為函數(shù)g(x)=3cos(ωx+φ)+1的對稱中心故有則1故答案為1【點睛】本題考查了正弦及余弦函數(shù)的性質(zhì)屬于基礎(chǔ)題13、①④【解析】①,正確;②錯誤;③,和在第一象限無交點,錯誤;④正確;⑤錯誤.故選①④14、【解析】由題意,∴A(3,2)是⊙C上一點,折疊該圓兩次使點A分別與圓上不相同的兩點(異于點A)重合,兩次的折痕方程分別為x﹣y+1=0和x+y﹣7=0,∴圓上不相同的兩點為B(1,4),D(5,4),∵A(3,2),BA⊥DA∴BD的中點為圓心C(3,4),半徑為1,∴⊙C的方程為(x﹣3)2+(y﹣4)2=4過P,M,N的圓的方程為x2+y2=m2,∴兩圓外切時,m的最大值為,兩圓內(nèi)切時,m的最小值為,故答案為[3,7]15、【解析】分和求解即可.【詳解】當(dāng)時,,所以(舍去);當(dāng)時,,所以(符合題意).故答案為:.16、①.②.【解析】將化為可得值,通過兩角和的正切公式可得的值.【詳解】因為,所以;,故答案為:,.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)函數(shù)為奇函數(shù),證明見解析(2)是中心對稱圖形,對稱中心坐標(biāo)為【解析】(1)根據(jù)奇函數(shù)的定義,即可證明結(jié)果;(2)根據(jù)題意,由函數(shù)的解析式可得,即可得結(jié)論【小問1詳解】解:函數(shù)為奇函數(shù)證明如下:函數(shù)的定義域為R,關(guān)于原點對稱又所以函數(shù)為奇函數(shù).【小問2詳解】解:函數(shù)的圖象是中心對稱圖形,其對稱中心為點解方程得,所以函數(shù)的定義域為明顯定義域僅關(guān)于點對稱所以若函數(shù)的圖象是中心對稱圖形,則其對稱中心橫坐標(biāo)必為設(shè)其對稱中心為點,則由題意可知有,令,可得,所以所以若函數(shù)為中心對稱圖形,其對稱中心必定為點下面論證函數(shù)的圖象關(guān)于點成中心對稱圖形:即只需證明,,得證18、(1);(2)2【解析】(1)進(jìn)行分?jǐn)?shù)指數(shù)冪的運算即可;(2)進(jìn)行對數(shù)的運算即可【詳解】(1)原式=;(2)原式=lg5(lg5+lg20)+lg4=2(lg5+lg2)=2【點睛】本題主要考查分?jǐn)?shù)指數(shù)冪和對數(shù)的運算,考查對數(shù)的換底公式.意在考查學(xué)生對這些知識的理解掌握水平和計算能力.19、(1)正確;(2)證明見解析【解析】(1)根據(jù)單位向量的定義可得出結(jié)論;(2)根據(jù)向量相等及坐標(biāo)運算,化簡計算即可證明結(jié)論.【詳解】(1)因為對于非零向量是方向上的單位向量,又且與共線,所以正確;(2)因為為的中點,則,從而在中,,又又M是AB的中點,所以,化簡得,結(jié)論得證.20、(I)(II)周期為,值域為【解析】(I)化簡得,進(jìn)而可求解(II)化簡,進(jìn)而可求解【詳解】(I)因為,,所以,由得,對稱軸為(II)因為,所以,,周

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論