寧夏銀川市2022年高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第1頁(yè)
寧夏銀川市2022年高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第2頁(yè)
寧夏銀川市2022年高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第3頁(yè)
寧夏銀川市2022年高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第4頁(yè)
寧夏銀川市2022年高考沖刺押題(最后一卷)數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1如果直線與圓相交,則點(diǎn)與圓C的位置關(guān)系是( )A點(diǎn)M在圓C上B點(diǎn)M在圓C外C點(diǎn)M在圓C內(nèi)D上述三種情況都有可能2觀察下列各式:,根據(jù)以上規(guī)律,則( )ABCD3已知數(shù)列對(duì)任意的有成立

2、,若,則等于( )ABCD4執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為( )ABCD5我國(guó)數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果,哥德巴赫猜想的內(nèi)容是:每個(gè)大于2的偶數(shù)都可以表示為兩個(gè)素?cái)?shù)的和,例如:,那么在不超過(guò)18的素?cái)?shù)中隨機(jī)選取兩個(gè)不同的數(shù),其和等于16的概率為( )ABCD6如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫(huà)出的是由一個(gè)棱柱挖去一個(gè)棱錐后的幾何體的三視圖,則該幾何體的體積為A72B64C48D327設(shè),分別為雙曲線(a0,b0)的左、右焦點(diǎn),過(guò)點(diǎn)作圓 的切線與雙曲線的左支交于點(diǎn)P,若,則雙曲線的離心率為( )ABCD8已知集合,集合,則( )ABCD9已知向量,則

3、( )ABC()D( )10為研究語(yǔ)文成績(jī)和英語(yǔ)成績(jī)之間是否具有線性相關(guān)關(guān)系,統(tǒng)計(jì)兩科成績(jī)得到如圖所示的散點(diǎn)圖(兩坐標(biāo)軸單位長(zhǎng)度相同),用回歸直線近似地刻畫(huà)其相關(guān)關(guān)系,根據(jù)圖形,以下結(jié)論最有可能成立的是()A線性相關(guān)關(guān)系較強(qiáng),b的值為1.25B線性相關(guān)關(guān)系較強(qiáng),b的值為0.83C線性相關(guān)關(guān)系較強(qiáng),b的值為0.87D線性相關(guān)關(guān)系太弱,無(wú)研究?jī)r(jià)值11設(shè)為坐標(biāo)原點(diǎn),是以為焦點(diǎn)的拋物線上任意一點(diǎn),是線段上的點(diǎn),且,則直線的斜率的最大值為( )ABCD112函數(shù)(),當(dāng)時(shí),的值域?yàn)?,則的范圍為( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知半徑為4的球面上有兩點(diǎn)A,B,AB=42,

4、球心為O,若球面上的動(dòng)點(diǎn)C滿足二面角C-AB-O的大小為60,則四面體OABC的外接球的半徑為_(kāi).14在平面直角坐標(biāo)系中,曲線上任意一點(diǎn)到直線的距離的最小值為_(kāi)15五聲音階是中國(guó)古樂(lè)基本音階,故有成語(yǔ)“五音不全”.中國(guó)古樂(lè)中的五聲音階依次為:宮、商、角、徵、羽,如果把這五個(gè)音階全用上,排成一個(gè)五個(gè)音階的音序,且要求宮、羽兩音階不相鄰且在角音階的同側(cè),可排成_種不同的音序.16已知三棱錐中,則該三棱錐的外接球的表面積是_.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17(12分)已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).(1)當(dāng)時(shí),證明:對(duì);(2)若函數(shù)在上存在極值,求實(shí)數(shù)的取值范圍。

5、18(12分)已知函數(shù)f(x)xlnx,g(x)x2ax.(1)求函數(shù)f(x)在區(qū)間t,t1(t0)上的最小值m(t);(2)令h(x)g(x)f(x),A(x1,h(x1),B(x2,h(x2)(x1x2)是函數(shù)h(x)圖像上任意兩點(diǎn),且滿足1,求實(shí)數(shù)a的取值范圍;(3)若x(0,1,使f(x)成立,求實(shí)數(shù)a的最大值19(12分)如圖,在三棱柱中,是邊長(zhǎng)為2的等邊三角形,.(1)證明:平面平面;(2),分別是,的中點(diǎn),是線段上的動(dòng)點(diǎn),若二面角的平面角的大小為,試確定點(diǎn)的位置.20(12分)已知函數(shù)()當(dāng)時(shí),討論函數(shù)的單調(diào)區(qū)間;()若對(duì)任意的和恒成立,求實(shí)數(shù)的取值范圍21(12分)已知曲線的參

6、數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(1)寫(xiě)出曲線的極坐標(biāo)方程;(2)點(diǎn)是曲線上的一點(diǎn),試判斷點(diǎn)與曲線的位置關(guān)系22(10分)已知拋物線與直線.(1)求拋物線C上的點(diǎn)到直線l距離的最小值;(2)設(shè)點(diǎn)是直線l上的動(dòng)點(diǎn),是定點(diǎn),過(guò)點(diǎn)P作拋物線C的兩條切線,切點(diǎn)為A,B,求證A,Q,B共線;并在時(shí)求點(diǎn)P坐標(biāo).參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1B【解析】根據(jù)圓心到直線的距離小于半徑可得滿足的條件,利用與圓心的距離判斷即可.【詳解】直線與圓相交,圓心到直線的距離,即也就是點(diǎn)到圓

7、的圓心的距離大于半徑即點(diǎn)與圓的位置關(guān)系是點(diǎn)在圓外故選:【點(diǎn)睛】本題主要考查直線與圓相交的性質(zhì),考查點(diǎn)到直線距離公式的應(yīng)用,屬于中檔題2B【解析】每個(gè)式子的值依次構(gòu)成一個(gè)數(shù)列,然后歸納出數(shù)列的遞推關(guān)系后再計(jì)算【詳解】以及數(shù)列的應(yīng)用根據(jù)題設(shè)條件,設(shè)數(shù)字,構(gòu)成一個(gè)數(shù)列,可得數(shù)列滿足,則,故選:B【點(diǎn)睛】本題主要考查歸納推理,解題關(guān)鍵是通過(guò)數(shù)列的項(xiàng)歸納出遞推關(guān)系,從而可確定數(shù)列的一些項(xiàng)3B【解析】觀察已知條件,對(duì)進(jìn)行化簡(jiǎn),運(yùn)用累加法和裂項(xiàng)法求出結(jié)果.【詳解】已知,則,所以有, ,兩邊同時(shí)相加得,又因?yàn)?,所?故選:【點(diǎn)睛】本題考查了求數(shù)列某一項(xiàng)的值,運(yùn)用了累加法和裂項(xiàng)法,遇到形如時(shí)就可以采用裂項(xiàng)法進(jìn)行

8、求和,需要掌握數(shù)列中的方法,并能熟練運(yùn)用對(duì)應(yīng)方法求解.4D【解析】循環(huán)依次為 直至結(jié)束循環(huán),輸出,選D.點(diǎn)睛:算法與流程圖的考查,側(cè)重于對(duì)流程圖循環(huán)結(jié)構(gòu)的考查.先明晰算法及流程圖的相關(guān)概念,包括選擇結(jié)構(gòu)、循環(huán)結(jié)構(gòu)、偽代碼,其次要重視循環(huán)起點(diǎn)條件、循環(huán)次數(shù)、循環(huán)終止條件,更要通過(guò)循環(huán)規(guī)律,明確流程圖研究的數(shù)學(xué)問(wèn)題,是求和還是求項(xiàng).5B【解析】先求出從不超過(guò)18的素?cái)?shù)中隨機(jī)選取兩個(gè)不同的數(shù)的所有可能結(jié)果,然后再求出其和等于16的結(jié)果,根據(jù)等可能事件的概率公式可求.【詳解】解:不超過(guò)18的素?cái)?shù)有2,3,5,7,11,13,17共7個(gè),從中隨機(jī)選取兩個(gè)不同的數(shù)共有,其和等于16的結(jié)果,共2種等可能的結(jié)

9、果,故概率.故選:B.【點(diǎn)睛】古典概型要求能夠列舉出所有事件和發(fā)生事件的個(gè)數(shù),本題不可以列舉出所有事件但可以用分步計(jì)數(shù)得到,屬于基礎(chǔ)題.6B【解析】由三視圖可知該幾何體是一個(gè)底面邊長(zhǎng)為4的正方形,高為5的正四棱柱,挖去一個(gè)底面邊長(zhǎng)為4,高為3的正四棱錐,利用體積公式,即可求解。【詳解】由題意,幾何體的三視圖可知該幾何體是一個(gè)底面邊長(zhǎng)為4的正方形,高為5的正四棱柱,挖去一個(gè)底面邊長(zhǎng)為4,高為3的正四棱錐,所以幾何體的體積為,故選B?!军c(diǎn)睛】本題考查了幾何體的三視圖及體積的計(jì)算,在由三視圖還原為空間幾何體的實(shí)際形狀時(shí),要根據(jù)三視圖的規(guī)則,空間幾何體的可見(jiàn)輪廓線在三視圖中為實(shí)線,不可見(jiàn)輪廓線在三視圖

10、中為虛線。求解以三視圖為載體的空間幾何體的表面積與體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)公式求解。7C【解析】設(shè)過(guò)點(diǎn)作圓 的切線的切點(diǎn)為,根據(jù)切線的性質(zhì)可得,且,再由和雙曲線的定義可得,得出為中點(diǎn),則有,得到,即可求解.【詳解】設(shè)過(guò)點(diǎn)作圓 的切線的切點(diǎn)為,所以是中點(diǎn),.故選:C.【點(diǎn)睛】本題考查雙曲線的性質(zhì)、雙曲線定義、圓的切線性質(zhì),意在考查直觀想象、邏輯推理和數(shù)學(xué)計(jì)算能力,屬于中檔題.8C【解析】求出集合的等價(jià)條件,利用交集的定義進(jìn)行求解即可.【詳解】解:,故選:C.【點(diǎn)睛】本題主要考查了對(duì)數(shù)的定義域與指數(shù)不等式的求解以及集合的基本運(yùn)算,屬于基礎(chǔ)題

11、.9D【解析】由題意利用兩個(gè)向量坐標(biāo)形式的運(yùn)算法則,兩個(gè)向量平行、垂直的性質(zhì),得出結(jié)論.【詳解】向量(1,2),(3,1),和的坐標(biāo)對(duì)應(yīng)不成比例,故、不平行,故排除A;顯然,3+20,故、不垂直,故排除B;(2,1),顯然,和的坐標(biāo)對(duì)應(yīng)不成比例,故和不平行,故排除C;()2+20,故 (),故D正確,故選:D.【點(diǎn)睛】本題主要考查兩個(gè)向量坐標(biāo)形式的運(yùn)算,兩個(gè)向量平行、垂直的性質(zhì),屬于基礎(chǔ)題.10B【解析】根據(jù)散點(diǎn)圖呈現(xiàn)的特點(diǎn)可以看出,二者具有相關(guān)關(guān)系,且斜率小于1.【詳解】散點(diǎn)圖里變量的對(duì)應(yīng)點(diǎn)分布在一條直線附近,且比較密集,故可判斷語(yǔ)文成績(jī)和英語(yǔ)成績(jī)之間具有較強(qiáng)的線性相關(guān)關(guān)系,且直線斜率小于1

12、,故選B.【點(diǎn)睛】本題主要考查散點(diǎn)圖的理解,側(cè)重考查讀圖識(shí)圖能力和邏輯推理的核心素養(yǎng).11C【解析】試題分析:設(shè),由題意,顯然時(shí)不符合題意,故,則,可得:,當(dāng)且僅當(dāng)時(shí)取等號(hào),故選C考點(diǎn):1拋物線的簡(jiǎn)單幾何性質(zhì);2均值不等式【方法點(diǎn)晴】本題主要考查的是向量在解析幾何中的應(yīng)用及拋物線標(biāo)準(zhǔn)方程方程,均值不等式的靈活運(yùn)用,屬于中檔題解題時(shí)一定要注意分析條件,根據(jù)條件,利用向量的運(yùn)算可知,寫(xiě)出直線的斜率,注意均值不等式的使用,特別是要分析等號(hào)是否成立,否則易出問(wèn)題12B【解析】首先由,可得的范圍,結(jié)合函數(shù)的值域和正弦函數(shù)的圖像,可求的關(guān)于實(shí)數(shù)的不等式,解不等式即可求得范圍.【詳解】因?yàn)?,所以,若值域?yàn)椋?/p>

13、所以只需,.故選:B【點(diǎn)睛】本題主要考查三角函數(shù)的值域,熟悉正弦函數(shù)的單調(diào)性和特殊角的三角函數(shù)值是解題的關(guān)鍵,側(cè)重考查數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素養(yǎng).二、填空題:本題共4小題,每小題5分,共20分。13463【解析】設(shè)ABC所在截面圓的圓心為O1,AB中點(diǎn)為D,連接OD,O1D,易知ODO1即為二面角C-AB-O的平面角,可求出OD,O1D及OO1,然后可判斷出四面體OABC外接球的球心E在直線OO1上,在RtO1BE中,O1B2+O1E2=BE2,結(jié)合O1B=OB2-OO12,BE=R,O1E=|R-6|,可求出四面體OABC的外接球的半徑R.【詳解】設(shè)ABC所在截面圓的圓心為O1,AB中點(diǎn)為

14、D,連接OD,O1D,OAOB,所以,ODAB,同理O1DAB,所以,ODO1即為二面角C-AB-O的平面角,ODO1=60,因?yàn)镺A=OB=4,AB=42,所以O(shè)AB是等腰直角三角形,OD=22,在RtODO1中,由cos60O1DOD,得O1D=2,由勾股定理,得:OO1=6,因?yàn)镺1到A、B、C三的距離相等,所以,四面體OABC外接球的球心E在直線OO1上,設(shè)四面體OABC外接球半徑為R,在RtO1BE中,O1B=OB2-OO12=10,BE=R,O1E=|R-6|,由勾股定理可得:O1B2+O1E2=BE2,即10+(R-6)2=R2,解得R=463【點(diǎn)睛】本題考查了三棱錐的外接球問(wèn)題

15、,考查了學(xué)生的空間想象能力、邏輯推理能力及計(jì)算求解能力,屬于中檔題14【解析】解法一:曲線上任取一點(diǎn),利用基本不等式可求出該點(diǎn)到直線的距離的最小值;解法二:曲線函數(shù)解析式為,由求出切點(diǎn)坐標(biāo),再計(jì)算出切點(diǎn)到直線的距離即可所求答案.【詳解】解法一(基本不等式):在曲線上任取一點(diǎn),該點(diǎn)到直線的距離為,當(dāng)且僅當(dāng)時(shí),即當(dāng)時(shí),等號(hào)成立,因此,曲線上任意一點(diǎn)到直線距離的最小值為;解法二(導(dǎo)數(shù)法):曲線的函數(shù)解析式為,則,設(shè)過(guò)曲線上任意一點(diǎn)的切線與直線平行,則,解得,當(dāng)時(shí),到直線的距離;當(dāng)時(shí),到直線的距離.所以曲線上任意一點(diǎn)到直線的距離的最小值為.故答案為:.【點(diǎn)睛】本題考查曲線上一點(diǎn)到直線距離最小值的計(jì)算,

16、可轉(zhuǎn)化為利用切線與直線平行來(lái)找出切點(diǎn),轉(zhuǎn)化為切點(diǎn)到直線的距離,也可以設(shè)曲線上的動(dòng)點(diǎn)坐標(biāo),利用基本不等式法或函數(shù)的最值進(jìn)行求解,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.151【解析】按照“角”的位置分類,分“角”在兩端,在中間,以及在第二個(gè)或第四個(gè)位置上,即可求出.【詳解】若“角”在兩端,則宮、羽兩音階一定在角音階同側(cè),此時(shí)有種;若“角”在中間,則不可能出現(xiàn)宮、羽兩音階不相鄰且在角音階的同側(cè);若“角”在第二個(gè)或第四個(gè)位置上,則有種;綜上,共有種.故答案為:1【點(diǎn)睛】本題主要考查利用排列知識(shí)解決實(shí)際問(wèn)題,涉及分步計(jì)數(shù)乘法原理和分類計(jì)數(shù)加法原理的應(yīng)用,意在考查學(xué)生分類討論思想的應(yīng)用和綜合運(yùn)用知識(shí)的

17、能力,屬于基礎(chǔ)題.16【解析】將三棱錐補(bǔ)成長(zhǎng)方體,設(shè),設(shè)三棱錐的外接球半徑為,求得的值,然后利用球體表面積公式可求得結(jié)果.【詳解】將三棱錐補(bǔ)成長(zhǎng)方體,設(shè),設(shè)三棱錐的外接球半徑為,則,由勾股定理可得,上述三個(gè)等式全部相加得,因此,三棱錐的外接球面積為.故答案為:.【點(diǎn)睛】本題考查三棱錐外接球表面積的計(jì)算,根據(jù)三棱錐對(duì)棱長(zhǎng)相等將三棱錐補(bǔ)成長(zhǎng)方體是解答的關(guān)鍵,考查推理能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17 (1)見(jiàn)證明;(2) 【解析】(1)利用導(dǎo)數(shù)說(shuō)明函數(shù)的單調(diào)性,進(jìn)而求得函數(shù)的最小值,得到要證明的結(jié)論;(2)問(wèn)題轉(zhuǎn)化為導(dǎo)函數(shù)在區(qū)間上有解,法一:對(duì)a分

18、類討論,分別研究a的不同取值下,導(dǎo)函數(shù)的單調(diào)性及值域,從而得到結(jié)論.法二:構(gòu)造函數(shù),利用函數(shù)的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性求得函數(shù)的值域,再利用零點(diǎn)存在定理說(shuō)明函數(shù)存在極值【詳解】(1)當(dāng)時(shí),于是,.又因?yàn)?,?dāng)時(shí),且.故當(dāng)時(shí),即. 所以,函數(shù)為上的增函數(shù),于是,.因此,對(duì),;(2) 方法一:由題意在上存在極值,則在上存在零點(diǎn),當(dāng)時(shí),為上的增函數(shù),注意到,所以,存在唯一實(shí)數(shù),使得成立. 于是,當(dāng)時(shí),為上的減函數(shù);當(dāng)時(shí),為上的增函數(shù);所以為函數(shù)的極小值點(diǎn); 當(dāng)時(shí),在上成立,所以在上單調(diào)遞增,所以在上沒(méi)有極值;當(dāng)時(shí),在上成立,所以在上單調(diào)遞減,所以在上沒(méi)有極值, 綜上所述,使在上存在極值的的取值范圍是.方法

19、二:由題意,函數(shù)在上存在極值,則在上存在零點(diǎn).即在上存在零點(diǎn). 設(shè),則由單調(diào)性的性質(zhì)可得為上的減函數(shù).即的值域?yàn)?,所以,?dāng)實(shí)數(shù)時(shí),在上存在零點(diǎn).下面證明,當(dāng)時(shí),函數(shù)在上存在極值.事實(shí)上,當(dāng)時(shí),為上的增函數(shù),注意到,所以,存在唯一實(shí)數(shù),使得成立.于是,當(dāng)時(shí),為上的減函數(shù);當(dāng)時(shí),為上的增函數(shù);即為函數(shù)的極小值點(diǎn).綜上所述,當(dāng)時(shí),函數(shù)在上存在極值.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的最值,涉及函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,函數(shù)的最值的求法,考查構(gòu)造法的應(yīng)用,是一道綜合題18(1)m(t)(2)a22.(3)a22.【解析】(1)是研究在動(dòng)區(qū)間上的最值問(wèn)題,這類問(wèn)題的研究方法就是通過(guò)討論函數(shù)的極值點(diǎn)與所研究

20、的區(qū)間的大小關(guān)系來(lái)進(jìn)行求解(2)注意到函數(shù)h(x)的圖像上任意不同兩點(diǎn)A,B連線的斜率總大于1,等價(jià)于h(x1)h(x2)x1x2(x1x2)恒成立,從而構(gòu)造函數(shù)F(x)h(x)x在(0,)上單調(diào)遞增,進(jìn)而等價(jià)于F(x)0在(0,)上恒成立來(lái)加以研究(3)用處理恒成立問(wèn)題來(lái)處理有解問(wèn)題,先分離變量轉(zhuǎn)化為求對(duì)應(yīng)函數(shù)的最值,得到a,再利用導(dǎo)數(shù)求函數(shù)M(x)的最大值,這要用到二次求導(dǎo),才可確定函數(shù)單調(diào)性,進(jìn)而確定函數(shù)最值【詳解】(1) f(x)1,x0,令f(x)0,則x1.當(dāng)t1時(shí),f(x)在t,t1上單調(diào)遞增,f(x)的最小值為f(t)tlnt;當(dāng)0t1時(shí),f(x)在區(qū)間(t,1)上為減函數(shù),在

21、區(qū)間(1,t1)上為增函數(shù),f(x)的最小值為f(1)1.綜上,m(t)(2)h(x)x2(a1)xlnx,不妨取0 x1x2,則x1x20,則由,可得h(x1)h(x2)x1x2,變形得h(x1)x1h(x2)x2恒成立令F(x)h(x)xx2(a2)xlnx,x0,則F(x)x2(a2)xlnx在(0,)上單調(diào)遞增,故F(x)2x(a2)0在(0,)上恒成立,所以2xa2在(0,)上恒成立因?yàn)?x2,當(dāng)且僅當(dāng)x時(shí)取“”,所以a22.(3)因?yàn)閒(x),所以a(x1)2x2xlnx.因?yàn)閤(0,1,則x1(1,2,所以x(0,1,使得a成立令M(x),則M(x).令y2x23xlnx1,則由

22、y0 可得x或x1(舍)當(dāng)x時(shí),y0,則函數(shù)y2x23xlnx1在上單調(diào)遞減;當(dāng)x時(shí),y0,則函數(shù)y2x23xlnx1在上單調(diào)遞增所以yln40,所以M(x)0在x(0,1時(shí)恒成立,所以M(x)在(0,1上單調(diào)遞增所以只需aM(1),即a1.所以實(shí)數(shù)a的最大值為1.【點(diǎn)睛】本題考查了函數(shù)與導(dǎo)數(shù)綜合問(wèn)題,考查了學(xué)生綜合分析,轉(zhuǎn)化與劃歸,數(shù)學(xué)運(yùn)算能力,屬于難題.19(1)證明見(jiàn)解析;(2)為線段上靠近點(diǎn)的四等分點(diǎn),且坐標(biāo)為【解析】(1)先通過(guò)線面垂直的判定定理證明平面,再根據(jù)面面垂直的判定定理即可證明;(2)分析位置關(guān)系并建立空間直角坐標(biāo)系,根據(jù)二面角的余弦值與平面法向量夾角的余弦值之間的關(guān)系,即可計(jì)算出的坐標(biāo)從而位置可確定.【詳解】(1)證明:因?yàn)?,所以,?又因?yàn)椋?,所以平?因?yàn)槠矫?,所以平面平?(2)解:連接,因?yàn)椋堑闹悬c(diǎn),所以.由(1)知,平面平面,所以平面.以為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則平面的一個(gè)法向量是,.設(shè),代入上式得,所以.設(shè)平面的一個(gè)法向量為,由,得.令,得.因?yàn)槎娼堑钠矫娼堑拇笮椋?,即,解?所以點(diǎn)為線段上靠近點(diǎn)的四等分點(diǎn),且坐標(biāo)為.【點(diǎn)睛】本題考查面面垂直的證明以及利用向量法求解二面角有關(guān)的問(wèn)題,難度一般.(1)證明面面垂直,可通過(guò)先證明線面垂直,再證明面面垂直;(2)二面角的余弦值不一定等于平面法向量夾

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論