湖北省荊、荊、襄、宜四地七校考試聯(lián)盟2022-2023學(xué)年高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第1頁
湖北省荊、荊、襄、宜四地七??荚嚶?lián)盟2022-2023學(xué)年高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第2頁
湖北省荊、荊、襄、宜四地七??荚嚶?lián)盟2022-2023學(xué)年高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第3頁
湖北省荊、荊、襄、宜四地七??荚嚶?lián)盟2022-2023學(xué)年高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第4頁
湖北省荊、荊、襄、宜四地七??荚嚶?lián)盟2022-2023學(xué)年高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為虛數(shù)單位,復(fù)數(shù),則其共軛復(fù)數(shù)()A. B. C. D.2.雙曲線的漸近線方程是()A. B. C. D.3.的展開式中各項系數(shù)的和為2,則該展開式中常數(shù)項為A.-40 B.-20 C.20 D.404.已知函數(shù)若對區(qū)間內(nèi)的任意實數(shù),都有,則實數(shù)的取值范圍是()A. B. C. D.5.已知函數(shù).下列命題:①函數(shù)的圖象關(guān)于原點對稱;②函數(shù)是周期函數(shù);③當(dāng)時,函數(shù)取最大值;④函數(shù)的圖象與函數(shù)的圖象沒有公共點,其中正確命題的序號是()A.①④ B.②③ C.①③④ D.①②④6.已知角的終邊經(jīng)過點,則A. B.C. D.7.已知復(fù)數(shù)z滿足(其中i為虛數(shù)單位),則復(fù)數(shù)z的虛部是()A. B.1 C. D.i8.在精準(zhǔn)扶貧工作中,有6名男干部、5名女干部,從中選出2名男干部、1名女干部組成一個扶貧小組分到某村工作,則不同的選法共有()A.60種 B.70種 C.75種 D.150種9.已知為等比數(shù)列,,,則()A.9 B.-9 C. D.10.已知向量,則是的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充要條件11.設(shè)、分別是定義在上的奇函數(shù)和偶函數(shù),且,則()A. B.0 C.1 D.312.已知雙曲線的漸近線方程為,且其右焦點為,則雙曲線的方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某校高二(4)班統(tǒng)計全班同學(xué)中午在食堂用餐時間,有7人用時為6分鐘,有14人用時7分鐘,有15人用時為8分鐘,還有4人用時為10分鐘,則高二(4)班全體同學(xué)用餐平均用時為____分鐘.14.設(shè)等差數(shù)列的前項和為,若,,則數(shù)列的公差________,通項公式________.15.已知多項式滿足,則_________,__________.16.的展開式中,項的系數(shù)是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為了解網(wǎng)絡(luò)外賣的發(fā)展情況,某調(diào)查機(jī)構(gòu)從全國各城市中抽取了100個相同等級地城市,分別調(diào)查了甲乙兩家網(wǎng)絡(luò)外賣平臺(以下簡稱外賣甲、外賣乙)在今年3月的訂單情況,得到外賣甲該月訂單的頻率分布直方圖,外賣乙該月訂單的頻數(shù)分布表,如下圖表所示.訂單:(單位:萬件)頻數(shù)1223訂單:(單位:萬件)頻數(shù)402020102(1)現(xiàn)規(guī)定,月訂單不低于13萬件的城市為“業(yè)績突出城市”,填寫下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為“是否為業(yè)績突出城市”與“選擇網(wǎng)絡(luò)外賣平臺”有關(guān).業(yè)績突出城市業(yè)績不突出城市總計外賣甲外賣乙總計(2)由頻率分布直方圖可以認(rèn)為,外賣甲今年3月在全國各城市的訂單數(shù)(單位:萬件)近似地服從正態(tài)分布,其中近似為樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表),的值已求出,約為3.64,現(xiàn)把頻率視為概率,解決下列問題:①從全國各城市中隨機(jī)抽取6個城市,記為外賣甲在今年3月訂單數(shù)位于區(qū)間的城市個數(shù),求的數(shù)學(xué)期望;②外賣甲決定在今年3月訂單數(shù)低于7萬件的城市開展“訂外賣,搶紅包”的營銷活動來提升業(yè)績,據(jù)統(tǒng)計,開展此活動后城市每月外賣訂單數(shù)將提高到平均每月9萬件的水平,現(xiàn)從全國各月訂單數(shù)不超過7萬件的城市中采用分層抽樣的方法選出100個城市不開展?fàn)I銷活動,若每按一件外賣訂單平均可獲純利潤5元,但每件外賣平均需送出紅包2元,則外賣甲在這100個城市中開展?fàn)I銷活動將比不開展?fàn)I銷活動每月多盈利多少萬元?附:①參考公式:,其中.參考數(shù)據(jù):0.150.100.050.0250.0100.0012.7022.7063.8415.0246.63510.828②若,則,.18.(12分)如圖,已知四邊形的直角梯形,∥BC,,,,為線段的中點,平面,,為線段上一點(不與端點重合).(1)若,(?。┣笞C:PC∥平面;(ⅱ)求平面與平面所成的銳二面角的余弦值;(2)否存在實數(shù)滿足,使得直線與平面所成的角的正弦值為,若存在,確定的值,若不存在,請說明理由.19.(12分)如圖,正方形所在平面外一點滿足,其中分別是與的中點.(1)求證:;(2)若,且二面角的平面角的余弦值為,求與平面所成角的正弦值.20.(12分)如圖,設(shè)點為橢圓的右焦點,圓過且斜率為的直線交圓于兩點,交橢圓于點兩點,已知當(dāng)時,(1)求橢圓的方程.(2)當(dāng)時,求的面積.21.(12分)在底面為菱形的四棱柱中,平面.(1)證明:平面;(2)求二面角的正弦值.22.(10分)已知函數(shù),且曲線在處的切線方程為.(1)求的極值點與極值.(2)當(dāng),時,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

先根據(jù)復(fù)數(shù)的乘法計算出,然后再根據(jù)共軛復(fù)數(shù)的概念直接寫出即可.【詳解】由,所以其共軛復(fù)數(shù).故選:B.【點睛】本題考查復(fù)數(shù)的乘法運(yùn)算以及共軛復(fù)數(shù)的概念,難度較易.2、C【解析】

根據(jù)雙曲線的標(biāo)準(zhǔn)方程即可得出該雙曲線的漸近線方程.【詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【點睛】本題考查雙曲線的漸近線方程的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意雙曲線的簡單性質(zhì)的合理運(yùn)用.3、D【解析】令x=1得a=1.故原式=.的通項,由5-2r=1得r=2,對應(yīng)的常數(shù)項=80,由5-2r=-1得r=3,對應(yīng)的常數(shù)項=-40,故所求的常數(shù)項為40,選D解析2.用組合提取法,把原式看做6個因式相乘,若第1個括號提出x,從余下的5個括號中選2個提出x,選3個提出;若第1個括號提出,從余下的括號中選2個提出,選3個提出x.故常數(shù)項==-40+80=404、C【解析】分析:先求導(dǎo),再對a分類討論求函數(shù)的單調(diào)區(qū)間,再畫圖分析轉(zhuǎn)化對區(qū)間內(nèi)的任意實數(shù),都有,得到關(guān)于a的不等式組,再解不等式組得到實數(shù)a的取值范圍.詳解:由題得.當(dāng)a<1時,,所以函數(shù)f(x)在單調(diào)遞減,因為對區(qū)間內(nèi)的任意實數(shù),都有,所以,所以故a≥1,與a<1矛盾,故a<1矛盾.當(dāng)1≤a<e時,函數(shù)f(x)在[0,lna]單調(diào)遞增,在(lna,1]單調(diào)遞減.所以因為對區(qū)間內(nèi)的任意實數(shù),都有,所以,所以即令,所以所以函數(shù)g(a)在(1,e)上單調(diào)遞減,所以,所以當(dāng)1≤a<e時,滿足題意.當(dāng)a時,函數(shù)f(x)在(0,1)單調(diào)遞增,因為對區(qū)間內(nèi)的任意實數(shù),都有,所以,故1+1,所以故綜上所述,a∈.故選C.點睛:本題的難點在于“對區(qū)間內(nèi)的任意實數(shù),都有”的轉(zhuǎn)化.由于是函數(shù)的問題,所以我們要聯(lián)想到利用函數(shù)的性質(zhì)(單調(diào)性、奇偶性、周期性、對稱性、最值、極值等)來分析解答問題.本題就是把這個條件和函數(shù)的單調(diào)性和最值聯(lián)系起來,完成了數(shù)學(xué)問題的等價轉(zhuǎn)化,找到了問題的突破口.5、A【解析】

根據(jù)奇偶性的定義可判斷出①正確;由周期函數(shù)特點知②錯誤;函數(shù)定義域為,最值點即為極值點,由知③錯誤;令,在和兩種情況下知均無零點,知④正確.【詳解】由題意得:定義域為,,為奇函數(shù),圖象關(guān)于原點對稱,①正確;為周期函數(shù),不是周期函數(shù),不是周期函數(shù),②錯誤;,,不是最值,③錯誤;令,當(dāng)時,,,,此時與無交點;當(dāng)時,,,,此時與無交點;綜上所述:與無交點,④正確.故選:.【點睛】本題考查函數(shù)與導(dǎo)數(shù)知識的綜合應(yīng)用,涉及到函數(shù)奇偶性和周期性的判斷、函數(shù)最值的判斷、兩函數(shù)交點個數(shù)問題的求解;本題綜合性較強(qiáng),對于學(xué)生的分析和推理能力有較高要求.6、D【解析】因為角的終邊經(jīng)過點,所以,則,即.故選D.7、A【解析】

由虛數(shù)單位i的運(yùn)算性質(zhì)可得,則答案可求.【詳解】解:∵,∴,,則化為,∴z的虛部為.故選:A.【點睛】本題考查了虛數(shù)單位i的運(yùn)算性質(zhì)、復(fù)數(shù)的概念,屬于基礎(chǔ)題.8、C【解析】

根據(jù)題意,分別計算“從6名男干部中選出2名男干部”和“從5名女干部中選出1名女干部”的取法數(shù),由分步計數(shù)原理計算可得答案.【詳解】解:根據(jù)題意,從6名男干部中選出2名男干部,有種取法,從5名女干部中選出1名女干部,有種取法,則有種不同的選法;故選:C.【點睛】本題考查排列組合的應(yīng)用,涉及分步計數(shù)原理問題,屬于基礎(chǔ)題.9、C【解析】

根據(jù)等比數(shù)列的下標(biāo)和性質(zhì)可求出,便可得出等比數(shù)列的公比,再根據(jù)等比數(shù)列的性質(zhì)即可求出.【詳解】∵,∴,又,可解得或設(shè)等比數(shù)列的公比為,則當(dāng)時,,∴;當(dāng)時,,∴.故選:C.【點睛】本題主要考查等比數(shù)列的性質(zhì)應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.10、A【解析】

向量,,,則,即,或者-1,判斷出即可.【詳解】解:向量,,,則,即,或者-1,所以是或者的充分不必要條件,故選:A.【點睛】本小題主要考查充分、必要條件的判斷,考查向量平行的坐標(biāo)表示,屬于基礎(chǔ)題.11、C【解析】

先根據(jù)奇偶性,求出的解析式,令,即可求出。【詳解】因為、分別是定義在上的奇函數(shù)和偶函數(shù),,用替換,得,化簡得,即令,所以,故選C?!军c睛】本題主要考查函數(shù)性質(zhì)奇偶性的應(yīng)用。12、B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點:雙曲線方程.二、填空題:本題共4小題,每小題5分,共20分。13、7.5【解析】

分別求出所有人用時總和再除以總?cè)藬?shù)即可得到平均數(shù).【詳解】故答案為:7.5【點睛】此題考查求平均數(shù),關(guān)鍵在于準(zhǔn)確計算出所有數(shù)據(jù)之和,易錯點在于概念辨析不清導(dǎo)致計算出錯.14、2【解析】

直接利用等差數(shù)列公式計算得到答案.【詳解】,,解得,,故.故答案為:2;.【點睛】本題考查了等差數(shù)列的基本計算,意在考查學(xué)生的計算能力.15、【解析】∵多項式滿足∴令,得,則∴∴該多項式的一次項系數(shù)為∴∴∴令,得故答案為5,7216、240【解析】

利用二項式展開式的通項公式,令x的指數(shù)等于3,計算展開式中含有項的系數(shù)即可.【詳解】由題意得:,只需,可得,代回原式可得,故答案:240.【點睛】本題主要考查二項式展開式的通項公式及簡單應(yīng)用,相對不難.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析,有90%的把握認(rèn)為“是否為業(yè)績突出城市”與“選擇網(wǎng)絡(luò)外賣平臺”有關(guān).(2)①4.911②100萬元.【解析】

(1)根據(jù)頻率分布直方圖與頻率分布表,易得兩個外賣平臺中月訂單不低于13萬件的城市數(shù)量,即可完善列聯(lián)表.通過計算的觀測值,即可結(jié)合臨界值作出判斷.(2)①先根據(jù)所給數(shù)據(jù)求得樣本平均值,根據(jù)所給今年3月訂單數(shù)區(qū)間,并由及求得,.結(jié)合正態(tài)分布曲線性質(zhì)可求得,再由二項分布的數(shù)學(xué)期望求法求解.②訂單數(shù)低于7萬件的城市有和兩組,根據(jù)分層抽樣的性質(zhì)可確定各組抽取樣本數(shù).分別計算出開展?fàn)I銷活動與不開展?fàn)I銷活動的利潤,比較即可得解.【詳解】(1)對于外賣甲:月訂單不低于13萬件的城市數(shù)量為,對于外賣乙:月訂單不低于13萬件的城市數(shù)量為.由以上數(shù)據(jù)完善列聯(lián)表如下圖,業(yè)績突出城市業(yè)績不突出城市總計外賣甲4060100外賣乙5248100總計92108200且的觀測值為,∴有90%的把握認(rèn)為“是否為業(yè)績突出城市”與“選擇網(wǎng)絡(luò)外賣平臺”有關(guān).(2)①樣本平均數(shù),故==,,的數(shù)學(xué)期望,②由分層抽樣知,則100個城市中每月訂單數(shù)在區(qū)間內(nèi)的有(個),每月訂單數(shù)在區(qū)間內(nèi)的有(個),若不開展?fàn)I銷活動,則一個月的利潤為(萬元),若開展?fàn)I銷活動,則一個月的利潤為(萬元),這100個城市中開展?fàn)I銷活動比不開展每月多盈利100萬元.【點睛】本題考查了頻率分布直方圖與頻率分布表的應(yīng)用,完善列聯(lián)表并計算的觀測值作出判斷,分層抽樣的簡單應(yīng)用,綜合性強(qiáng),屬于中檔題.18、(1)(ⅰ)證明見解析(ⅱ)(2)存在,【解析】

(1)(i)連接交于點,連接,,依題意易證四邊形為平行四邊形,從而有,,由此能證明PC∥平面(ii)推導(dǎo)出,以為原點建立空間直角坐標(biāo)系,利用向量法求解;(2)設(shè),求出平面的法向量,利用向量法求解.【詳解】(1)(?。┳C明:連接交于點,連接,,因為為線段的中點,所以,因為,所以因為∥所以四邊形為平行四邊形.所以又因為,所以又因為平面,平面,所以平面.(ⅱ)解:如圖,在平行四邊形中因為,,所以以為原點建立空間直角坐標(biāo)系則,,,所以,,,平面的法向量為設(shè)平面的法向量為,則,即,取,得,設(shè)平面和平面所成的銳二面角為,則所以銳二面角的余弦值為(2)設(shè)所以,,設(shè)平面的法向量為,則,取,得,因為直線與平面所成的角的正弦值為,所以解得所以存在滿足,使得直線與平面所成的角的正弦值為.【點睛】此題二查線面平行的證明,考查銳二面角的余弦值的求法,考查滿足線面角的正弦值的點是否存在的判斷與求法,考查空間中線線,線面,面面的位置關(guān)系等知識,考查了推理能力與計算能力,屬于中檔題.19、(1)證明見解析(2)【解析】

(1)先證明EF平面,即可求證;(2)根據(jù)二面角的余弦值,可得平面,以為坐標(biāo)原點,建立空間直角坐標(biāo)系,利用向量計算線面角即可.【詳解】(1)連接,交于點,連結(jié).則,故面.又面,因此.(2)由(1)知即為二面角的平面角,且.在中應(yīng)用余弦定理,得,于是有,即,從而有平面.以為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,則,于是,,設(shè)平面的法向量為,則,即,解得于是平面的一個法向量為.設(shè)直線與平面所成角為,因此.【點睛】本題主要考查了線面垂直,線線垂直的證明,二面角,線面角的向量求法,屬于中檔題.20、(1)(2)【解析】

(1)先求出圓心到直線的距離為,再根據(jù)得到,解之即得a的值,再根據(jù)c=1求出b的值得到橢圓的方程.(2)先求出,,再求得的面積.【詳解】(1)因為直線過點,且斜率.所以直線的方程為,即,所以圓心到直線的距離為,又因為,圓的半徑為,所以,即,解之得,或(舍去).所以,所以所示橢圓的方程為.(2)由(1)得,橢圓的右準(zhǔn)線方程為,離心率,則點到右準(zhǔn)線的距離為,所以,即,把代入橢圓方程得,,因為直線的斜率,所以,因為直線經(jīng)過和,所以直線的方程為,聯(lián)立方程組得,解得或,所以,所以的面積.【點睛】本題主要考查直線和圓、橢圓的位置關(guān)系,考查橢圓的方程的求法,考查三角形面積的計算,意在考查學(xué)生對這些知識的掌握水平和分析推理計算能力.21、(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論