2023年四川省任隆中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測試題含解析_第1頁
2023年四川省任隆中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測試題含解析_第2頁
2023年四川省任隆中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測試題含解析_第3頁
2023年四川省任隆中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測試題含解析_第4頁
2023年四川省任隆中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知的內(nèi)角、、的對邊分別為、、,邊上的高為,且,則的最大值是()A. B. C. D.2.如果直線m//直線n,且m//平面α,那么n與αA.相交 B.n//α C.n?α3.函數(shù)在上零點(diǎn)的個數(shù)為()A.2 B.3 C.4 D.54.下列函數(shù)中,在區(qū)間上為減函數(shù)的是A. B. C. D.5.等比數(shù)列的各項(xiàng)均為正數(shù),且,則()A. B. C. D.6.若,則的最小值為()A. B. C. D.7.“紋樣”是中國藝術(shù)寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為5的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機(jī)投擲1000個點(diǎn),己知恰有400個點(diǎn)落在陰影部分,據(jù)此可估計(jì)陰影部分的面積是A.2 B.3 C.10 D.158.已知函數(shù)在區(qū)間內(nèi)單調(diào)遞增,且,若,,,則、、的大小關(guān)系為()A. B. C. D.9.用表示不超過的最大整數(shù)(如,).數(shù)列滿足,若,則的所有可能值的個數(shù)為()A.1 B.2 C.3 D.410.集合,,則=()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖所示的莖葉圖記錄了甲、乙兩組各五名學(xué)生在一次英語聽力測試中的成績(單位:分),已知甲組數(shù)據(jù)的中位數(shù)為17,則x的值為_________.12.已知為銳角,則_______.13.如圖所示,隔河可以看到對岸兩目標(biāo),但不能到達(dá),現(xiàn)在岸邊取相距的兩點(diǎn),測得(在同一平面內(nèi)),則兩目標(biāo)間的距離為_________.14.在中,角、、所對的邊為、、,若,,,則角________.15.在平面直角坐標(biāo)系xOy中,已知直角中,直角頂點(diǎn)A在直線上,頂點(diǎn)B,C在圓上,則點(diǎn)A橫坐標(biāo)的取值范圍是__________.16.點(diǎn)從點(diǎn)出發(fā),沿單位圓順時針方向運(yùn)動弧長到達(dá)點(diǎn),則點(diǎn)的坐標(biāo)為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.將函數(shù)的圖像向右平移1個單位,得到函數(shù)的圖像.(1)求的單調(diào)遞增區(qū)間;(3)設(shè)為坐標(biāo)原點(diǎn),直線與函數(shù)的圖像自左至右相交于點(diǎn),,,求的值.18.已知向量,向量.(1)求向量的坐標(biāo);(2)當(dāng)為何值時,向量與向量共線.19.等差數(shù)列中,,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求的值.20.如圖,墻上有一壁畫,最高點(diǎn)離地面4米,最低點(diǎn)離地面2米,觀察者從距離墻米,離地面高米的處觀賞該壁畫,設(shè)觀賞視角(1)若問:觀察者離墻多遠(yuǎn)時,視角最大?(2)若當(dāng)變化時,求的取值范圍.21.設(shè)函數(shù).(1)已知圖象的相鄰兩條對稱軸的距離為,求正數(shù)的值;(2)已知函數(shù)在區(qū)間上是增函數(shù),求正數(shù)的最大值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

由余弦定理化簡可得,利用三角形面積公式可得,解得,利用正弦函數(shù)的圖象和性質(zhì)即可得解其最大值.【詳解】由余弦定理可得:,故:,而,故,所以:.故選.【點(diǎn)睛】本題主要考查了余弦定理,三角形面積公式,正弦函數(shù)的圖象和性質(zhì)在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.2、D【解析】

利用直線與平面平行的判定定理和直線與平面平行的性質(zhì)進(jìn)行判斷即可.【詳解】∵直線m/直線n,且m/平面∴當(dāng)n不在平面α內(nèi)時,平面α內(nèi)存在直線m'//m?n//m',符合線面平行的判定定理可得n/平面α當(dāng)n在平面α內(nèi)時,也符合條件,n與α的位置關(guān)系是n//α或【點(diǎn)睛】本題主要考查線面平行的判定定理以及線面平行的性質(zhì),意在考查對基本定理掌握的熟練程度,屬于基礎(chǔ)題.3、D【解析】

在同一直角坐標(biāo)系下,分別作出與的圖象,結(jié)合函數(shù)圖象即可求解.【詳解】解:由題意知:函數(shù)在上零點(diǎn)個數(shù),等價于與的圖象在同一直角坐標(biāo)系下交點(diǎn)的個數(shù),作圖如下:由圖可知:函數(shù)在上有個零點(diǎn).故選:D【點(diǎn)睛】本題考查函數(shù)的零點(diǎn)的知識,考查數(shù)形結(jié)合思想,屬于中檔題.4、D【解析】試題分析:在區(qū)間上為增函數(shù);在區(qū)間上先增后減;在區(qū)間上為增函數(shù);在區(qū)間上為減函數(shù),選D.考點(diǎn):函數(shù)增減性5、D【解析】

本題首先可根據(jù)數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列以及計(jì)算出的值,然后根據(jù)對數(shù)的相關(guān)運(yùn)算以及等比中項(xiàng)的相關(guān)性質(zhì)即可得出結(jié)果.【詳解】因?yàn)榈缺葦?shù)列的各項(xiàng)均為正數(shù),,所以,,所以,故選D.【點(diǎn)睛】本題考查對數(shù)的相關(guān)運(yùn)算以及等比中項(xiàng)的相關(guān)性質(zhì),考查的公式為以及在等比數(shù)列中有,考查計(jì)算能力,是簡單題.6、D【解析】

根據(jù)對數(shù)運(yùn)算可求得且,,利用基本不等式可求得最小值.【詳解】由得:且,(當(dāng)且僅當(dāng)時取等號)本題正確選項(xiàng):【點(diǎn)睛】本題考查利用基本不等式求解和的最小值的問題,關(guān)鍵是能夠利用對數(shù)運(yùn)算得到積的定值,屬于基礎(chǔ)題.7、C【解析】

根據(jù)古典概型概率公式以及幾何概型概率公式分別計(jì)算概率,解方程可得結(jié)果.【詳解】設(shè)陰影部分的面積是s,由題意得4001000【點(diǎn)睛】(1)當(dāng)試驗(yàn)的結(jié)果構(gòu)成的區(qū)域?yàn)殚L度、面積、體積等時,應(yīng)考慮使用幾何概型求解.(2)利用幾何概型求概率時,關(guān)鍵是試驗(yàn)的全部結(jié)果構(gòu)成的區(qū)域和事件發(fā)生的區(qū)域的尋找,有時需要設(shè)出變量,在坐標(biāo)系中表示所需要的區(qū)域.8、B【解析】

由偶函數(shù)的性質(zhì)可得出函數(shù)在區(qū)間上為減函數(shù),由對數(shù)的性質(zhì)可得出,由偶函數(shù)的性質(zhì)得出,比較出、、的大小關(guān)系,再利用函數(shù)在區(qū)間上的單調(diào)性可得出、、的大小關(guān)系.【詳解】,則函數(shù)為偶函數(shù),函數(shù)在區(qū)間內(nèi)單調(diào)遞增,在該函數(shù)在區(qū)間上為減函數(shù),,由換底公式得,由函數(shù)的性質(zhì)可得,對數(shù)函數(shù)在上為增函數(shù),則,指數(shù)函數(shù)為增函數(shù),則,即,,因此,.【點(diǎn)睛】本題考查利用函數(shù)的奇偶性與單調(diào)性比較函數(shù)值的大小關(guān)系,同時也考查了利用中間值法比較指數(shù)式和代數(shù)式的大小關(guān)系,涉及指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,考查分析問題和解決問題的能力,屬于中等題.9、C【解析】

數(shù)列取倒數(shù),利用累加法得到通項(xiàng)公式,再判斷的所有可能值.【詳解】兩邊取倒數(shù):利用累加法:為遞增數(shù)列.計(jì)算:,整數(shù)部分為0,整數(shù)部分為1,整數(shù)部分為2的所有可能值的個數(shù)為0,1,2答案選C【點(diǎn)睛】本題考查了累加法求數(shù)列和,綜合性強(qiáng),意在考查學(xué)生對于新知識的閱讀理解能力,解決問題的能力,和計(jì)算能力.10、C【解析】

根據(jù)交集定義直接求解可得結(jié)果.【詳解】根據(jù)交集定義知:故選:【點(diǎn)睛】本題考查集合運(yùn)算中的交集運(yùn)算,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)莖葉圖中數(shù)據(jù)和中位數(shù)的定義可構(gòu)造方程求得.【詳解】甲組數(shù)據(jù)的中位數(shù)為,解得:故答案為:【點(diǎn)睛】本題考查莖葉圖中中位數(shù)相關(guān)問題的求解,屬于基礎(chǔ)題.12、【解析】

利用同角三角函數(shù)的基本關(guān)系得,再根據(jù)角度關(guān)系,利用誘導(dǎo)公式即可得答案.【詳解】∵且,∴;∵,∴.故答案為:.【點(diǎn)睛】本題考查同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時注意三角函數(shù)的符號問題.13、【解析】

在中,在中,分別由正弦定理求出,,在中,由余弦定理可得解.【詳解】由圖可得,在中,由正弦定理可得,在中,由正弦定理可得,在中,由余弦定理可得:.故答案為:【點(diǎn)睛】此題考查利用正余弦定理求解三角形,根據(jù)已知邊角關(guān)系建立等式求解,此題求AB的長度可在多個三角形中計(jì)算,恰當(dāng)?shù)剡x擇可以減少計(jì)算量.14、.【解析】

利用余弦定理求出的值,結(jié)合角的取值范圍得出角的值.【詳解】由余弦定理得,,,故答案為.【點(diǎn)睛】本題考查余弦定理的應(yīng)用和反三角函數(shù),解題時要充分結(jié)合元素類型選擇正弦定理和余弦定理解三角形,考查計(jì)算能力,屬于中等題.15、【解析】

由題意畫出圖形,寫出以原點(diǎn)為圓心,以為半徑的圓的方程,與直線方程聯(lián)立求得值,則答案可求.【詳解】如圖所示,當(dāng)點(diǎn)往直線兩邊運(yùn)動時,不斷變小,當(dāng)點(diǎn)為直線上的定點(diǎn)時,直線與圓相切時,最大,∴當(dāng)為正方形,則,則以為圓心,以為半徑的圓的方程為.聯(lián)立,得.解得或.點(diǎn)橫坐標(biāo)的取值范圍是.故答案為:.【點(diǎn)睛】本題考查直線與圓位置關(guān)系的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力,求解時注意坐標(biāo)法的應(yīng)用.16、【解析】

由題意可得OQ恰好是角的終邊,利用任意角的三角函數(shù)的定義,求得Q點(diǎn)的坐標(biāo).【詳解】點(diǎn)P從點(diǎn)出發(fā),沿單位圓順時針方向運(yùn)動弧長到達(dá)Q點(diǎn),則OQ恰好是角的終邊,故Q點(diǎn)的橫坐標(biāo),縱坐標(biāo)為,故答案為:【點(diǎn)睛】本題主要考查任意角的三角函數(shù)的定義,屬于容易題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)();(2)【解析】

(1)通過“左加右減”可得到函數(shù)的解析式,從而求得的單調(diào)遞增區(qū)間;(2)先求得直線與軸的交點(diǎn)為,則,又,關(guān)于點(diǎn)對稱,所以,從而.【詳解】(1)令,,的單調(diào)遞增區(qū)間是()(2)直線與軸的交點(diǎn)為,即為函數(shù)的對稱中心,且,關(guān)于點(diǎn)對稱,【點(diǎn)睛】本題主要考查三角函數(shù)平移,增減區(qū)間的求解,對稱中心的性質(zhì)及向量的基本運(yùn)算,意在考查學(xué)生的分析能力和計(jì)算能力.18、(1)(2)【解析】試題分析:(1)根據(jù)向量坐標(biāo)運(yùn)算公式計(jì)算;(2)求出的坐標(biāo),根據(jù)向量共線與坐標(biāo)的關(guān)系列方程解出k;試題解析:(1)(2),∵與共線,∴∴19、(1);(2)【解析】(Ⅰ)設(shè)等差數(shù)列的公差為.由已知得,解得.所以.(Ⅱ)由(Ⅰ)可得.所以.考點(diǎn):1、等差數(shù)列通項(xiàng)公式;2、分組求和法.20、(1)(2)3≤x≤1.【解析】試題分析:(1)利用兩角差的正切公式建立函數(shù)關(guān)系式,根據(jù)基本不等式求最值,最后根據(jù)正切函數(shù)單調(diào)性確定最大時取法,(2)利用兩角差的正切公式建立等量關(guān)系式,進(jìn)行參變分離得,再根據(jù)a的范圍確定范圍,最后解不等式得的取值范圍.試題解析:(1)當(dāng)時,過作的垂線,垂足為,則,且,由已知觀察者離墻米,且,則,所以,,當(dāng)且僅當(dāng)時,取“”.又因?yàn)樵谏蠁握{(diào)增,所以,當(dāng)觀察者離墻米時,視角最大.(2)由題意得,,又,所以,所以,當(dāng)時,,所以,即,解得或,又因?yàn)?,所以,所以的取值范圍為?1、(1)1;(2).【解析】

(1)由二倍角公式可化函數(shù)為,結(jié)合正弦函數(shù)的性質(zhì)可得;(2)先求得的增區(qū)間,其中,此區(qū)間應(yīng)包含,這樣可得之間的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論