湖南省郴州市第五完全中學2022-2023學年中考三模數(shù)學試題含解析_第1頁
湖南省郴州市第五完全中學2022-2023學年中考三模數(shù)學試題含解析_第2頁
湖南省郴州市第五完全中學2022-2023學年中考三模數(shù)學試題含解析_第3頁
湖南省郴州市第五完全中學2022-2023學年中考三模數(shù)學試題含解析_第4頁
湖南省郴州市第五完全中學2022-2023學年中考三模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.某種超薄氣球表面的厚度約為,這個數(shù)用科學記數(shù)法表示為()A. B. C. D.2.葉綠體是植物進行光合作用的場所,葉綠體DNA最早發(fā)現(xiàn)于衣藻葉綠體,長約0.00005米.其中,0.00005用科學記數(shù)法表示為()A.0.5×10﹣4 B.5×10﹣4 C.5×10﹣5 D.50×10﹣33.如圖1,點P從△ABC的頂點A出發(fā),沿A﹣B﹣C勻速運動,到點C停止運動.點P運動時,線段AP的長度y與運動時間x的函數(shù)關系如圖2所示,其中D為曲線部分的最低點,則△ABC的面積是()A.10 B.12 C.20 D.244.如圖是拋物線y1=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點坐標A(1,3),與x軸的一個交點B(4,0),直線y2=mx+n(m≠0)與拋物線交于A,B兩點,下列結論:①2a+b=0;②abc>0;③方程ax2+bx+c=3有兩個相等的實數(shù)根;④拋物線與x軸的另一個交點是(﹣1,0);⑤當1<x<4時,有y2<y1,其中正確的是()A.①②③ B.①③④ C.①③⑤ D.②④⑤5.不等式組的解集是()A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤26.關于x的一元一次不等式≤﹣2的解集為x≥4,則m的值為()A.14 B.7 C.﹣2 D.27.如圖所示,將矩形ABCD的四個角向內(nèi)折起,恰好拼成一個既無縫隙又無重疊的四邊形EFGH,若EH=3,EF=4,那么線段AD與AB的比等于()A.25:24 B.16:15 C.5:4 D.4:38.如圖,直線AB、CD相交于點O,EO⊥CD,下列說法錯誤的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°9.下列圖形中,是正方體表面展開圖的是()A. B. C. D.10.關于x的不等式組的所有整數(shù)解是()A.0,1 B.﹣1,0,1 C.0,1,2 D.﹣2,0,1,2二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平行四邊形ABCD中,AB<AD,∠D=30°,CD=4,以AB為直徑的⊙O交BC于點E,則陰影部分的面積為_____.12.如圖,已知圓錐的母線SA的長為4,底面半徑OA的長為2,則圓錐的側(cè)面積等于.13.如圖,點E在正方形ABCD的外部,∠DCE=∠DEC,連接AE交CD于點F,∠CDE的平分線交EF于點G,AE=2DG.若BC=8,則AF=_____.14.如圖,點A的坐標為(3,),點B的坐標為(6,0),將△AOB繞點B按順時針方向旋轉(zhuǎn)一定的角度后得到△A′O′B,點A的對應點A′在x軸上,則點O′的坐標為_____.15.已知實數(shù)a、b、c滿足+|10﹣2c|=0,則代數(shù)式ab+bc的值為__.16.如果拋物線y=﹣x2+(m﹣1)x+3經(jīng)過點(2,1),那么m的值為_____.三、解答題(共8題,共72分)17.(8分)“分組合作學習”已成為推動課堂教學改革,打造自主高效課堂的重要措施.某中學從全校學生中隨機抽取部分學生對“分組合作學習”實施后的學習興趣情況進行調(diào)查分析,統(tǒng)計圖如下:請結合圖中信息解答下列問題:求出隨機抽取調(diào)查的學生人數(shù);補全分組后學生學習興趣的條形統(tǒng)計圖;分組后學生學習興趣為“中”的所占的百分比和對應扇形的圓心角.18.(8分)先化簡,再求值:,其中x=.19.(8分)某新建成學校舉行美化綠化校園活動,九年級計劃購買A,B兩種花木共100棵綠化操場,其中A花木每棵50元,B花木每棵100元.(1)若購進A,B兩種花木剛好用去8000元,則購買了A,B兩種花木各多少棵?(2)如果購買B花木的數(shù)量不少于A花木的數(shù)量,請設計一種購買方案使所需總費用最低,并求出該購買方案所需總費用.20.(8分)化簡,再求值:21.(8分)某公司銷售A,B兩種品牌的教學設備,這兩種教學設備的進價和售價如表所示AB進價(萬元/套)1.51.2售價(萬元/套)1.81.4該公司計劃購進兩種教學設備若干套,共需66萬元,全部銷售后可獲毛利潤12萬元.(1)該公司計劃購進A,B兩種品牌的教學設備各多少套?(2)通過市場調(diào)研,該公司決定在原計劃的基礎上,減少A種設備的購進數(shù)量,增加B種設備的購進數(shù)量,已知B種設備增加的數(shù)量是A種設備減少的數(shù)量的1.5倍.若用于購進這兩種教學設備的總資金不超過68萬元,問A種設備購進數(shù)量至多減少多少套?22.(10分)已知平行四邊形.尺規(guī)作圖:作的平分線交直線于點,交延長線于點(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);在(1)的條件下,求證:.23.(12分)先化簡,再求值:﹣1,其中a=2sin60°﹣tan45°,b=1.24.如圖1,在Rt△ABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.(1)觀察猜想圖1中,線段PM與PN的數(shù)量關系是,位置關系是;(2)探究證明把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;(3)拓展延伸把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出△PMN面積的最大值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】,故選:A.【點睛】本題考查了用科學記數(shù)法表示較小的數(shù),一般形式為,其中,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.2、C【解析】絕對值小于1的負數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定,0.00005=,故選C.3、B【解析】過點A作AM⊥BC于點M,由題意可知當點P運動到點M時,AP最小,此時長為4,觀察圖象可知AB=AC=5,∴BM==3,∴BC=2BM=6,∴S△ABC==12,故選B.【點睛】本題考查了動點問題的函數(shù)圖象,根據(jù)已知和圖象能確定出AB、AC的長,以及點P運動到與BC垂直時最短是解題的關鍵.4、C【解析】試題解析:∵拋物線的頂點坐標A(1,3),∴拋物線的對稱軸為直線x=-=1,∴2a+b=0,所以①正確;∵拋物線開口向下,∴a<0,∴b=-2a>0,∵拋物線與y軸的交點在x軸上方,∴c>0,∴abc<0,所以②錯誤;∵拋物線的頂點坐標A(1,3),∴x=1時,二次函數(shù)有最大值,∴方程ax2+bx+c=3有兩個相等的實數(shù)根,所以③正確;∵拋物線與x軸的一個交點為(4,0)而拋物線的對稱軸為直線x=1,∴拋物線與x軸的另一個交點為(-2,0),所以④錯誤;∵拋物線y1=ax2+bx+c與直線y2=mx+n(m≠0)交于A(1,3),B點(4,0)∴當1<x<4時,y2<y1,所以⑤正確.故選C.考點:1.二次函數(shù)圖象與系數(shù)的關系;2.拋物線與x軸的交點.5、D【解析】由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式組的解集為﹣1<x≤2,故選D6、D【解析】

解不等式得到x≥m+3,再列出關于m的不等式求解.【詳解】≤﹣1,m﹣1x≤﹣6,﹣1x≤﹣m﹣6,x≥m+3,∵關于x的一元一次不等式≤﹣1的解集為x≥4,∴m+3=4,解得m=1.故選D.考點:不等式的解集7、A【解析】

先根據(jù)圖形翻折的性質(zhì)可得到四邊形EFGH是矩形,再根據(jù)全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面積公式即可解答.【詳解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四邊形EFGH的其它內(nèi)角都是90°,∴四邊形EFGH是矩形,∴EH=FG(矩形的對邊相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代換),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根據(jù)勾股定理得HF==5,又∵HE?EF=HF?EM,∴EM=,又∵AE=EM=EB(折疊后A、B都落在M點上),∴AB=2EM=,∴AD:AB=5:==25:1.故選A【點睛】本題考查的是圖形的翻折變換,解題過程中應注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,折疊以后的圖形與原圖形全等.8、C【解析】

根據(jù)對頂角性質(zhì)、鄰補角定義及垂線的定義逐一判斷可得.【詳解】A、∠AOD與∠BOC是對頂角,所以∠AOD=∠BOC,此選項正確;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此選項正確;C、∠AOC與∠BOD是對頂角,所以∠AOC=∠BOD,此選項錯誤;D、∠AOD與∠BOD是鄰補角,所以∠AOD+∠BOD=180°,此選項正確;故選C.【點睛】本題主要考查垂線、對頂角與鄰補角,解題的關鍵是掌握對頂角性質(zhì)、鄰補角定義及垂線的定義.9、C【解析】

利用正方體及其表面展開圖的特點解題.【詳解】解:A、B、D經(jīng)過折疊后,下邊沒有面,所以不可以圍成正方體,C能折成正方體.故選C.【點睛】本題考查了正方體的展開圖,解題時牢記正方體無蓋展開圖的各種情形.10、B【解析】

分別求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集,據(jù)此即可得出答案.【詳解】解不等式﹣2x<4,得:x>﹣2,解不等式3x﹣5<1,得:x<2,則不等式組的解集為﹣2<x<2,所以不等式組的整數(shù)解為﹣1、0、1,故選:B.【點睛】考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】【分析】連接半徑和弦AE,根據(jù)直徑所對的圓周角是直角得:∠AEB=90°,繼而可得AE和BE的長,所以圖中弓形的面積為扇形OBE的面積與△OBE面積的差,因為OA=OB,所以△OBE的面積是△ABE面積的一半,可得結論.【詳解】如圖,連接OE、AE,∵AB是⊙O的直徑,∴∠AEB=90°,∵四邊形ABCD是平行四邊形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S陰影=S扇形OBE﹣S△BOE==,故答案為.【點睛】本題考查了扇形的面積計算、平行四邊形的性質(zhì),含30度角的直角三角形的性質(zhì)等,求出扇形OBE的面積和△ABE的面積是解本題的關鍵.12、8π【解析】

圓錐的側(cè)面積就等于母線長乘底面周長的一半.依此公式計算即可.【詳解】側(cè)面積=4×4π÷2=8π.故答案為8π.【點睛】本題主要考查了圓錐的計算,正確理解圓錐的側(cè)面積的計算可以轉(zhuǎn)化為扇形的面積的計算,理解圓錐與展開圖之間的關系.13、【解析】

如圖作DH⊥AE于H,連接CG.設DG=x,∵∠DCE=∠DEC,∴DC=DE,∵四邊形ABCD是正方形,∴AD=DC,∠ADF=90°,∴DA=DE,∵DH⊥AE,∴AH=HE=DG,在△GDC與△GDE中,,∴△GDC≌△GDE(SAS),∴GC=GE,∠DEG=∠DCG=∠DAF,∵∠AFD=∠CFG,∴∠ADF=∠CGF=90°,∴2∠GDE+2∠DEG=90°,∴∠GDE+∠DEG=45°,∴∠DGH=45°,在Rt△ADH中,AD=8,AH=x,DH=x,∴82=x2+(x)2,解得:x=,∵△ADH∽△AFD,∴,∴AF==4.故答案為4.14、(,)【解析】

作AC⊥OB、O′D⊥A′B,由點A、B坐標得出OC=3、AC=、BC=OC=3,從而知tan∠ABC==,由旋轉(zhuǎn)性質(zhì)知BO′=BO=6,tan∠A′BO′=tan∠ABO==,設O′D=x、BD=3x,由勾股定理求得x的值,即可知BD、O′D的長即可.【詳解】如圖,過點A作AC⊥OB于C,過點O′作O′D⊥A′B于D,

∵A(3,),

∴OC=3,AC=,

∵OB=6,

∴BC=OC=3,

則tan∠ABC==,

由旋轉(zhuǎn)可知,BO′=BO=6,∠A′BO′=∠ABO,

∴==,

設O′D=x,BD=3x,

由O′D2+BD2=O′B2可得(x)2+(3x)2=62,

解得:x=或x=?(舍),

則BD=3x=,O′D=x=,

∴OD=OB+BD=6+=,

∴點O′的坐標為(,).【點睛】本題考查的是圖形的旋轉(zhuǎn),熟練掌握勾股定理和三角函數(shù)是解題的關鍵.15、-1【解析】試題分析:根據(jù)非負數(shù)的性質(zhì)可得:,解得:,則ab+bc=(-11)×6+6×5=-66+30=-1.16、2【解析】

把點(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.【詳解】∵拋物線y=﹣x2+(m﹣1)x+3經(jīng)過點(2,1),∴1=-4+2(m-1)+3,解得m=2,故答案為2.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征,解題的關鍵是找出二次函數(shù)圖象上的點的坐標滿足的關系式.三、解答題(共8題,共72分)17、(1)200人;(2)補圖見解析;(3)分組后學生學習興趣為“中”的所占的百分比為30%;對應扇形的圓心角為108°.【解析】試題分析:(1)用“極高”的人數(shù)所占的百分比,即可解答;

(2)求出“高”的人數(shù),即可補全統(tǒng)計圖;

(3)用“中”的人數(shù)調(diào)查的學生人數(shù),即可得到所占的百分比,所占的百分比即可求出對應的扇形圓心角的度數(shù).試題解析:(人).學生學習興趣為“高”的人數(shù)為:(人).補全統(tǒng)計圖如下:分組后學生學習興趣為“中”的所占的百分比為:學生學習興趣為“中”對應扇形的圓心角為:18、1+【解析】

先把小括號內(nèi)的通分,按照分式的減法和分式除法法則進行化簡,再把字母的值代入運算即可.【詳解】解:原式當時,原式=【點睛】考查分式的混合運算,掌握運算順序是解題的關鍵.19、(1)購買A種花木40棵,B種花木60棵;(2)當購買A種花木50棵、B種花木50棵時,所需總費用最低,最低費用為7500元.【解析】

(1)設購買A種花木x棵,B種花木y棵,根據(jù)“A,B兩種花木共100棵、購進A,B兩種花木剛好用去8000元”列方程組求解可得;(2)設購買A種花木a棵,則購買B種花木(100﹣a)棵,根據(jù)“B花木的數(shù)量不少于A花木的數(shù)量”求得a的范圍,再設購買總費用為W,列出W關于a的解析式,利用一次函數(shù)的性質(zhì)求解可得.【詳解】解析:(1)設購買A種花木x棵,B種花木y棵,根據(jù)題意,得:,解得:,答:購買A種花木40棵,B種花木60棵;(2)設購買A種花木a棵,則購買B種花木(100﹣a)棵,根據(jù)題意,得:100﹣a≥a,解得:a≤50,設購買總費用為W,則W=50a+100(100﹣a)=﹣50a+10000,∵W隨a的增大而減小,∴當a=50時,W取得最小值,最小值為7500元,答:當購買A種花木50棵、B種花木50棵時,所需總費用最低,最低費用為7500元.考點:一元一次不等式的應用;二元一次方程組的應用.20、【解析】試題分析:把分式化簡,然后把x的值代入化簡后的式子求值就可以了.試題解析:原式==當時,原式=.考點:1.二次根式的化簡求值;2.分式的化簡求值.21、(1)該公司計劃購進A種品牌的教學設備20套,購進B種品牌的教學設備30套;(2)A種品牌的教學設備購進數(shù)量至多減少1套.【解析】

(1)設該公司計劃購進A種品牌的教學設備x套,購進B種品牌的教學設備y套,根據(jù)花11萬元購進兩種設備銷售后可獲得利潤12萬元,即可得出關于x、y的二元一次方程組,解之即可得出結論;(2)設A種品牌的教學設備購進數(shù)量減少m套,則B種品牌的教學設備購進數(shù)量增加1.5m套,根據(jù)總價=單價×數(shù)量結合用于購進這兩種教學設備的總資金不超過18萬元,即可得出關于m的一元一次不等式,解之取其中最大的整數(shù)即可得出結論.【詳解】解:(1)設該公司計劃購進A種品牌的教學設備x套,購進B種品牌的教學設備y套,根據(jù)題意得:解得:.答:該公司計劃購進A種品牌的教學設備20套,購進B種品牌的教學設備30套.(2)設A種品牌的教學設備購進數(shù)量減少m套,則B種品牌的教學設備購進數(shù)量增加1.5m套,根據(jù)題意得:1.5(20﹣m)+1.2(30+1.5m)≤18,解得:m≤,∵m為整數(shù),∴m≤1.答:A種品牌的教學設備購進數(shù)量至多減少1套.【點睛】本題考查了二元一次方程組的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出二元一次方程組;(2)根據(jù)各數(shù)量間的關系,正確列出一元一次不等式.22、(1)見解析;(2)見解析.【解析】試題分析:(1)作∠BAD的平分線交直線BC于點E,交DC延長線于點F即可;(2)先根據(jù)平行四邊形的性質(zhì)得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠1.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠1,據(jù)此可得出結論.試題解析:(1)如圖所示,AF即為所求;(2)∵四邊形ABCD是平行四邊形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠1.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠1,∴CE=CF.考點:作圖—基本作圖;平行四邊形的性質(zhì).23、【解析】

對待求式的分子、分母進行因式分解,并將除法化為乘法可得×-1,通過約分即可得到化簡結果;先利用特殊角的三角函數(shù)值求出a的值,再將a、b的值代入化簡結果中計算即可解答本題.【詳解】原式=×-1=-1==,當a═2sin60°﹣tan45°=2×﹣1=﹣1,b=1時,原式=.【點睛】本題考查了分式的化簡求值,解題的關鍵是熟練的掌握分式的化簡求值運算法則.24、(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形,理由詳見解析;(3).【解析】

(1)利用三角形的中位線得出PM=CE,PN=BD,進而判斷出BD=CE,即可得出結論,再利用三角形的中位線得出PM∥CE得出∠DPM=∠DCA,最后用互余即可得出結論;(2)先判斷出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM=BD,PN=BD,即可得出PM=PN,同(1)的方法即可得出結論;(3)方法1、先判斷出MN最大時,△PMN的面積最大,進而求出AN,AM,即可得出MN最大=AM+A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論