2023屆北京師大附屬實(shí)驗(yàn)中學(xué)數(shù)學(xué)高一下期末質(zhì)量檢測(cè)試題含解析_第1頁(yè)
2023屆北京師大附屬實(shí)驗(yàn)中學(xué)數(shù)學(xué)高一下期末質(zhì)量檢測(cè)試題含解析_第2頁(yè)
2023屆北京師大附屬實(shí)驗(yàn)中學(xué)數(shù)學(xué)高一下期末質(zhì)量檢測(cè)試題含解析_第3頁(yè)
2023屆北京師大附屬實(shí)驗(yàn)中學(xué)數(shù)學(xué)高一下期末質(zhì)量檢測(cè)試題含解析_第4頁(yè)
2023屆北京師大附屬實(shí)驗(yàn)中學(xué)數(shù)學(xué)高一下期末質(zhì)量檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖,正四面體,是棱上的動(dòng)點(diǎn),設(shè)(),分別記與,所成角為,,則()A. B. C.當(dāng)時(shí), D.當(dāng)時(shí),2.設(shè)函數(shù),其中均為非零常數(shù),若,則的值是()A.2 B.4 C.6 D.不確定3.在中,分別為角的對(duì)邊,若的面積為,則的值為()A. B. C. D.4.若函數(shù),又,,且的最小值為,則正數(shù)的值是()A. B. C. D.5.設(shè)是復(fù)數(shù),從,,,,,,中選取若干對(duì)象組成集合,則這樣的集合最多有()A.3個(gè)元素 B.4個(gè)元素 C.5個(gè)元素 D.6個(gè)元素6.函數(shù)的零點(diǎn)所在的區(qū)間為()A. B. C. D.7.函數(shù)的零點(diǎn)有兩個(gè),求實(shí)數(shù)的取值范圍()A. B.或 C.或 D.8.已知角是第三象限的角,則角是()A.第一或第二象限的角 B.第二或第三象限的角C.第一或第三象限的角 D.第二或第四象限的角9.已知等差數(shù)列共有10項(xiàng),其中奇數(shù)項(xiàng)之和15,偶數(shù)項(xiàng)之和為30,則其公差是()A.5 B.4 C.3 D.210.已知a,b是正實(shí)數(shù),且,則的最小值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的單調(diào)增區(qū)間是_________12.弧度制是數(shù)學(xué)上一種度量角的單位制,數(shù)學(xué)家歐拉在他的著作《無(wú)窮小分析概論》中提出把圓的半徑作為弧長(zhǎng)的度量單位.已知一個(gè)扇形的弧長(zhǎng)等于其半徑長(zhǎng),則該扇形圓心角的弧度數(shù)是__________.13.在數(shù)列中,是其前項(xiàng)和,若,,則___________.14.已知數(shù)列滿足,,,則數(shù)列的通項(xiàng)公式為________.15.已知函數(shù)的部分圖象如圖所示,則_______.16.__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知函數(shù),其中常數(shù);(1)令,判定函數(shù)的奇偶性,并說(shuō)明理由;(2)令,將函數(shù)圖像向右平移個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)的圖像,對(duì)任意,求在區(qū)間上零點(diǎn)個(gè)數(shù)的所有可能值;18.已知f(x)=ax+ka﹣x(a>0且a≠1)是R上的奇函數(shù),且f(1).(1)求f(x)的解析式;(2)若關(guān)于x的方程f(1)+f(1﹣3mx﹣2)=0在區(qū)間[0,1]內(nèi)只有一個(gè)解,求m取值集合;(3)是否存在正整數(shù)n,使不得式f(2x)≥(n﹣1)f(x)對(duì)一切x∈[﹣1,1]均成立?若存在,求出所有n的值若不存在,說(shuō)明理由19.在中,已知,其中角所對(duì)的邊分別為.求(1)求角的大??;(2)若,的面積為,求的值.20.已知直線l1:ax﹣y﹣2=0與直線l2:(3﹣2a)x+y﹣1=0(a∈R).(1)若l1與l2互相垂直,求a的值:(2)若l1與l2相交且交點(diǎn)在第三象限,求a的取值范圍.21.設(shè)是兩個(gè)相互垂直的單位向量,且(Ⅰ)若,求的值;(Ⅱ)若,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】作交于時(shí),為正三角形,,是與成的角,根據(jù)等腰三角形的性質(zhì),作交于,同理可得,當(dāng)時(shí),,故選D.2、C【解析】

根據(jù)正弦、余弦的誘導(dǎo)公式,由,可以得到等式,求出的表達(dá)式,結(jié)合剛得到的等式求值即可.【詳解】因?yàn)?,所?故選:C【點(diǎn)睛】本題考查三角函數(shù)的化簡(jiǎn)求值,考查誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.3、B【解析】試題分析:由已知條件及三角形面積計(jì)算公式得由余弦定理得考點(diǎn):考查三角形面積計(jì)算公式及余弦定理.4、D【解析】,由,得,,由,得,則,當(dāng)時(shí),取得最小值,則,解得,故選D.5、A【解析】

設(shè)復(fù)數(shù)分別計(jì)算出以上式子,根據(jù)集合的元素互異性,可判斷答案.【詳解】解:設(shè)復(fù)數(shù),,,,故由以上的數(shù)組成的集合最多有,,這個(gè)元素,故選:【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算及相關(guān)概念,屬于中檔題.6、C【解析】

分別將選項(xiàng)中的區(qū)間端點(diǎn)值代回,利用零點(diǎn)存在性定理判斷即可【詳解】由題函數(shù)單調(diào)遞增,,,則,故選:C【點(diǎn)睛】本題考查利用零點(diǎn)存在性定理判斷零點(diǎn)所在區(qū)間,屬于基礎(chǔ)題7、B【解析】

由題意可得,的圖象(紅色部分)和直線有2個(gè)交點(diǎn),數(shù)形結(jié)合求得的范圍.【詳解】由題意可得的圖象(紅色部分)和直線有2個(gè)交點(diǎn),如圖所示:故有或,故選:B.【點(diǎn)睛】已知函數(shù)零點(diǎn)(方程根)的個(gè)數(shù),求參數(shù)取值范圍的三種常用的方法:(1)直接法,直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過(guò)解不等式確定參數(shù)范圍;(2)分離參數(shù)法,先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問(wèn)題加以解決;(3)數(shù)形結(jié)合法,先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解.一是轉(zhuǎn)化為兩個(gè)函數(shù)的圖象的交點(diǎn)個(gè)數(shù)問(wèn)題,畫出兩個(gè)函數(shù)的圖象,其交點(diǎn)的個(gè)數(shù)就是函數(shù)零點(diǎn)的個(gè)數(shù),二是轉(zhuǎn)化為的圖象的交點(diǎn)個(gè)數(shù)問(wèn)題.8、D【解析】

可采取特殊化的思路求解,也可將各象限分成兩等份,再?gòu)膞軸正半軸起,逆時(shí)針依次將各區(qū)域標(biāo)上一?二?三?四,則標(biāo)有三的即為所求區(qū)域.【詳解】(方法一)取,則,此時(shí)角為第二象限的角;取,則,此時(shí)角為第四象限的角.(方法二)如圖,先將各象限分成兩等份,再?gòu)膞軸正半軸起,逆時(shí)針依次將各區(qū)域標(biāo)上一?二?三?四,則標(biāo)有三的區(qū)域即為角的終邊所在的區(qū)域,故角為第二或第四象限的角.故選:D【點(diǎn)睛】本題主要考查了根據(jù)所在象限求所在象限的方法,屬于中檔題.9、C【解析】,故選C.10、B【解析】

設(shè),則,逐步等價(jià)變形,直到可以用基本不等式求最值,即可得到本題答案.【詳解】由,得,設(shè),則,所以.故選:B【點(diǎn)睛】本題主要考查利用基本不等式求最值,化簡(jiǎn)變形是關(guān)鍵,考查計(jì)算能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、,【解析】

令,即可求得結(jié)果.【詳解】令,解得:,所以單調(diào)遞增區(qū)間是,故填:,【點(diǎn)睛】本題考查了型如:?jiǎn)握{(diào)區(qū)間的求法,屬于基礎(chǔ)題型.12、1【解析】設(shè)扇形的弧長(zhǎng)和半徑長(zhǎng)為,由弧度制的定義可得,該扇形圓心角的弧度數(shù)是.13、【解析】

令,可求出的值,令,由可求出的表達(dá)式,再檢驗(yàn)是否符合時(shí)的表達(dá)式,由此可得出數(shù)列的通項(xiàng)公式.【詳解】當(dāng)時(shí),;當(dāng)時(shí),.不適合上式,因此,.故答案為:.【點(diǎn)睛】本題考查利用求數(shù)列的通項(xiàng)公式,一般利用,求解時(shí)還應(yīng)對(duì)是否滿足的表達(dá)式進(jìn)行驗(yàn)證,考查運(yùn)算求解能力,屬于中等題.14、.【解析】

由題意得出,可得出數(shù)列為等比數(shù)列,確定出該數(shù)列的首項(xiàng)和公比,可求出數(shù)列的通項(xiàng)公式,進(jìn)而求出數(shù)列的通項(xiàng)公式.【詳解】設(shè),整理得,對(duì)比可得,,即,且,所以,數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,,因此,,故答案為.【點(diǎn)睛】本題考查數(shù)列通項(xiàng)的求解,解題時(shí)要結(jié)合遞推式的結(jié)構(gòu)選擇合適的方法來(lái)求解,同時(shí)要注意等差數(shù)列和等比數(shù)列定義的應(yīng)用,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.15、【解析】

由圖可得,即可求得:,再由圖可得:當(dāng)時(shí),取得最大值,即可列方程,整理得:,解得:(),結(jié)合即可得解.【詳解】由圖可得:,所以,解得:由圖可得:當(dāng)時(shí),取得最大值,即:整理得:,所以()又,所以【點(diǎn)睛】本題主要考查了三角函數(shù)圖象的性質(zhì)及觀察能力,還考查了轉(zhuǎn)化思想及計(jì)算能力,屬于中檔題.16、【解析】

利用誘導(dǎo)公式以及正弦差角公式化簡(jiǎn)式子,之后利用特殊角的三角函數(shù)值直接計(jì)算即可.【詳解】.故答案為【點(diǎn)睛】該題考查的是有關(guān)三角函數(shù)化簡(jiǎn)求值問(wèn)題,涉及到的知識(shí)點(diǎn)有誘導(dǎo)公式,差角正弦公式,特殊角的三角函數(shù)值,屬于簡(jiǎn)單題目.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)非奇非偶,理由見解析;(2)21或20個(gè).【解析】

(1)先利用輔助角公式化簡(jiǎn),再利用和可判斷為非奇非偶函數(shù).(2)求出的解析式后結(jié)合函數(shù)的圖像、周期及給定區(qū)間的特點(diǎn)可判斷在給定的范圍上的零點(diǎn)的個(gè)數(shù).【詳解】(1),則,故不是奇函數(shù),又,,故不是偶函數(shù).綜上,為非奇非偶函數(shù).(2),的圖象如圖所示:令,則,則或,,也就是或者,,所以在形如的區(qū)間上恰有兩個(gè)不同零點(diǎn).把區(qū)間分成10個(gè)小區(qū)間,它們分別為:,及,根據(jù)函數(shù)的圖像可知:前9個(gè)區(qū)間的長(zhǎng)度恰為一個(gè)周期且左閉右開,故每個(gè)區(qū)間恰有兩個(gè)不同的零點(diǎn),最后一個(gè)區(qū)間的長(zhǎng)度恰為一個(gè)周期且為閉區(qū)間,故該區(qū)間上可能有兩個(gè)不同的零點(diǎn)或3個(gè)不同的零點(diǎn).故在區(qū)間上可有21個(gè)或者20個(gè)零點(diǎn).【點(diǎn)睛】本題考查正弦型函數(shù)的奇偶性、正弦型函數(shù)在給定范圍上的零點(diǎn)個(gè)數(shù),注意說(shuō)明一個(gè)函數(shù)不是奇函數(shù)或不是偶函數(shù),可通過(guò)反例來(lái)說(shuō)明,而零點(diǎn)個(gè)數(shù)的判斷則需綜合考慮給定區(qū)間的長(zhǎng)度、開閉情況及函數(shù)的周期.18、(1)f(x)=1x﹣1﹣x(2)(﹣∞,2]∪{4}(1)存在正整數(shù)n,使不得式f(2x)≥(n﹣1)f(x)對(duì)一切x∈[﹣1,1]均成立,且n的值為1,2,1【解析】

(1)利用奇函數(shù)的性質(zhì)及f(1)列出方程組,解方程組即可得到函數(shù)解析式;

(2)結(jié)合函數(shù)單調(diào)性和函數(shù)的奇偶性脫去符號(hào),轉(zhuǎn)化為二次函數(shù)的零點(diǎn)分布求解;

(1)分離得,由,得到的范圍,由此得出結(jié)論.的范圍【詳解】(1)由題意,,解得,∴f(x)=1x﹣1﹣x;(2)由指數(shù)函數(shù)的性質(zhì)可知,函數(shù)f(x)=1x﹣1﹣x為R上的增函數(shù),故方程f(91)+f(1﹣1mx﹣2)=0即為,即故g(x)=2mx2﹣(4+m)x+2=0在區(qū)間[0,1]內(nèi)只有一個(gè)解,①當(dāng)m=0時(shí),,符合題意;②當(dāng)m≠0時(shí),由g(0)=2>0,故只需g(1)=2m﹣4﹣m+2≤0,則m≤2且m≠0;③當(dāng)△=(4+m)2﹣16m=0時(shí),m=4,此時(shí),符合題意;綜上,實(shí)數(shù)m的取值范圍為(﹣∞,2]∪{4};(1)f(2x)≥(n﹣1)f(x)即為,∵1x+1﹣x≥2,當(dāng)且即當(dāng)“x=0”時(shí)取等號(hào),∴n﹣1≤2,即n≤1,∴存在正整數(shù)n,使不得式f(2x)≥(n﹣1)f(x)對(duì)一切x∈[﹣1,1]均成立,且n的值為1,2,1.【點(diǎn)睛】本題考查函數(shù)的性質(zhì),函數(shù)與方程的綜合運(yùn)用,考查轉(zhuǎn)化思想及分類討論思想,屬于中檔題.19、(1);(2)1.【解析】試題分析:(1)利用正弦定理角化邊,結(jié)合三角函數(shù)的性質(zhì)可得;(2)由△ABC的面積可得,由余弦定理可得,結(jié)合正弦定理可得:的值是1.試題解析:(1)由正弦定理,得,∵,∴.即,而∴,則(2)由,得,由及余弦定理得,即,所以.20、(1)a,或a=1(2)a>3【解析】

(1)由題意利用兩條直線互相垂直的性質(zhì),求得的值;(2)聯(lián)立方程組求出兩條直線的交點(diǎn)坐標(biāo),再根據(jù)交點(diǎn)在第三象限,求出的取值范圍.【詳解】(1)∵直線l1:ax﹣y﹣2=0與直線l2:(3﹣2a)x+y﹣1=0,l1與l2互相垂直,∴a?(3﹣2a)+(﹣1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論