版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共2頁(yè)貴州民用航空職業(yè)學(xué)院《數(shù)值模擬技術(shù)》2024-2025學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共20個(gè)小題,每小題2分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,時(shí)間序列分析用于處理具有時(shí)間順序的數(shù)據(jù)。假設(shè)我們要分析股票價(jià)格的歷史數(shù)據(jù)。以下關(guān)于時(shí)間序列分析的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以使用移動(dòng)平均等方法對(duì)時(shí)間序列進(jìn)行平滑處理,去除噪聲B.自回歸模型(AR)和移動(dòng)平均模型(MA)可以用于預(yù)測(cè)時(shí)間序列的未來(lái)值C.時(shí)間序列數(shù)據(jù)一定是平穩(wěn)的,不需要進(jìn)行平穩(wěn)性檢驗(yàn)D.可以結(jié)合多種時(shí)間序列模型,提高預(yù)測(cè)的準(zhǔn)確性2、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)分析時(shí),需要找出不同變量之間的關(guān)系。假設(shè)要分析消費(fèi)者的購(gòu)買(mǎi)行為與廣告投放之間的關(guān)聯(lián),數(shù)據(jù)量龐大且變量眾多。以下哪種關(guān)聯(lián)分析方法在處理這種復(fù)雜的商業(yè)數(shù)據(jù)時(shí)更能發(fā)現(xiàn)有價(jià)值的關(guān)聯(lián)規(guī)則?()A.Apriori算法B.FP-Growth算法C.Eclat算法D.以上算法效果相同3、在進(jìn)行數(shù)據(jù)分類任務(wù)時(shí),需要評(píng)估模型的性能。假設(shè)我們訓(xùn)練了一個(gè)分類模型,以下哪個(gè)評(píng)估指標(biāo)能夠綜合考慮模型的查準(zhǔn)率和查全率?()A.F1值B.準(zhǔn)確率C.召回率D.AUC值4、在對(duì)一家餐廳的營(yíng)業(yè)數(shù)據(jù)進(jìn)行分析,例如菜品銷售數(shù)量、顧客評(píng)價(jià)、營(yíng)業(yè)時(shí)間段等,以制定營(yíng)銷策略和優(yōu)化菜單。以下哪個(gè)因素可能對(duì)餐廳的盈利能力產(chǎn)生最大影響?()A.熱門(mén)菜品的推廣B.營(yíng)業(yè)時(shí)間段的調(diào)整C.菜單的更新和優(yōu)化D.以上都是5、對(duì)于一個(gè)不平衡的數(shù)據(jù)集(某一類別的樣本數(shù)量遠(yuǎn)多于其他類別),以下哪種處理方法可能會(huì)提高模型性能?()A.過(guò)采樣B.欠采樣C.生成對(duì)抗網(wǎng)絡(luò)D.以上都是6、在數(shù)據(jù)分析中,若要比較不同組數(shù)據(jù)的離散程度,以下哪個(gè)指標(biāo)可以使用?()A.方差B.均值C.中位數(shù)D.眾數(shù)7、數(shù)據(jù)分析中的文本分析是一個(gè)重要領(lǐng)域。假設(shè)你要對(duì)大量的客戶評(píng)論進(jìn)行情感分析,判斷是正面、負(fù)面還是中性。以下關(guān)于文本分析方法的選擇,哪一項(xiàng)是最重要的?()A.使用詞袋模型,基于詞頻統(tǒng)計(jì)進(jìn)行分析B.運(yùn)用深度學(xué)習(xí)模型,如卷積神經(jīng)網(wǎng)絡(luò),自動(dòng)提取特征C.借助詞典和規(guī)則,根據(jù)預(yù)定義的情感詞和句式判斷D.隨機(jī)抽取部分評(píng)論進(jìn)行人工分析,以此類推整體8、在處理不平衡數(shù)據(jù)集時(shí),即某些類別樣本數(shù)量遠(yuǎn)少于其他類別,以下關(guān)于數(shù)據(jù)分析方法的調(diào)整,哪一項(xiàng)是最有效的?()A.直接使用常規(guī)的分類算法,不做特殊處理B.對(duì)少數(shù)類樣本進(jìn)行過(guò)采樣,增加其數(shù)量C.對(duì)多數(shù)類樣本進(jìn)行欠采樣,減少其數(shù)量D.以上三種方法結(jié)合使用,根據(jù)數(shù)據(jù)特點(diǎn)進(jìn)行優(yōu)化9、對(duì)于一個(gè)不平衡的數(shù)據(jù)集(例如,某一類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別),以下哪種方法可以提高模型對(duì)少數(shù)類別的識(shí)別能力?()A.過(guò)采樣B.欠采樣C.調(diào)整分類閾值D.以上都是10、數(shù)據(jù)分析中,數(shù)據(jù)分析方法的選擇應(yīng)根據(jù)具體問(wèn)題來(lái)確定。以下關(guān)于數(shù)據(jù)分析方法選擇的說(shuō)法中,錯(cuò)誤的是?()A.不同的數(shù)據(jù)分析方法適用于不同類型的問(wèn)題和數(shù)據(jù),需要根據(jù)實(shí)際情況進(jìn)行選擇B.數(shù)據(jù)分析方法的選擇可以參考前人的研究經(jīng)驗(yàn)和案例,但不能完全依賴C.選擇數(shù)據(jù)分析方法時(shí),應(yīng)考慮方法的準(zhǔn)確性、效率和可解釋性等因素D.數(shù)據(jù)分析方法一旦確定就不能再進(jìn)行調(diào)整和改變,否則會(huì)影響分析結(jié)果的可靠性11、在處理大規(guī)模數(shù)據(jù)時(shí),分布式計(jì)算框架變得非常重要。假設(shè)你有數(shù)十億行的銷售數(shù)據(jù)需要進(jìn)行分析,以下關(guān)于分布式計(jì)算框架的選擇,哪一項(xiàng)是最關(guān)鍵的?()A.考慮框架的易用性和學(xué)習(xí)成本,選擇容易上手的框架B.關(guān)注框架的性能和可擴(kuò)展性,能否處理大規(guī)模數(shù)據(jù)并快速得出結(jié)果C.選擇開(kāi)源且社區(qū)活躍的框架,以便獲取支持和資源D.依據(jù)公司已有的技術(shù)棧和團(tuán)隊(duì)熟悉程度來(lái)決定框架12、數(shù)據(jù)分析中的時(shí)間序列分析常用于預(yù)測(cè)未來(lái)趨勢(shì)。假設(shè)要預(yù)測(cè)未來(lái)一個(gè)月的某商品銷售量,該商品的銷售數(shù)據(jù)具有明顯的季節(jié)性和趨勢(shì)性。以下哪種時(shí)間序列預(yù)測(cè)模型在這種情況下更有可能提供準(zhǔn)確的預(yù)測(cè)?()A.移動(dòng)平均模型B.指數(shù)平滑模型C.ARIMA模型D.Prophet模型13、在數(shù)據(jù)庫(kù)中,若要優(yōu)化數(shù)據(jù)庫(kù)的存儲(chǔ)結(jié)構(gòu),以下哪個(gè)操作可能會(huì)被執(zhí)行?()A.合并表B.拆分表C.增加索引D.以上都是14、數(shù)據(jù)分析中的數(shù)據(jù)隱私保護(hù)是一個(gè)重要的問(wèn)題。假設(shè)一家公司要對(duì)員工的個(gè)人數(shù)據(jù)進(jìn)行分析,同時(shí)需要確保數(shù)據(jù)的使用符合法律和道德規(guī)范。以下哪種措施可能有助于保護(hù)員工的隱私?()A.匿名化處理數(shù)據(jù)B.只在公司內(nèi)部網(wǎng)絡(luò)中分析數(shù)據(jù)C.獲得員工的明確同意D.以上措施都有助于保護(hù)隱私15、在數(shù)據(jù)挖掘中,若要對(duì)文本數(shù)據(jù)進(jìn)行分類,以下哪種算法可能會(huì)被使用?()A.NaiveBayes算法B.C4.5算法C.K-Means算法D.以上都有可能16、對(duì)于一個(gè)具有多個(gè)特征的數(shù)據(jù)集,若要進(jìn)行特征縮放,以下哪種方法可以將特征值映射到特定的區(qū)間?()A.最小-最大縮放B.標(biāo)準(zhǔn)化C.正則化D.以上都是17、在數(shù)據(jù)分析的異常檢測(cè)中,假設(shè)要從大量的交易數(shù)據(jù)中找出異常的交易行為,例如高額、頻繁或不符合常規(guī)模式的交易。以下哪種異常檢測(cè)方法可能更能有效地發(fā)現(xiàn)這些異常?()A.基于統(tǒng)計(jì)的方法,設(shè)定閾值判斷異常B.基于距離的方法,計(jì)算數(shù)據(jù)點(diǎn)之間的距離C.基于密度的方法,根據(jù)數(shù)據(jù)的局部密度D.不進(jìn)行異常檢測(cè),認(rèn)為所有交易都是正常的18、在進(jìn)行時(shí)間序列分析時(shí),如果數(shù)據(jù)存在明顯的長(zhǎng)期趨勢(shì)和季節(jié)性變動(dòng),以下哪種模型較為適用?()A.ARIMA模型B.SARIMA模型C.Holt-Winters模型D.以上都不是19、在數(shù)據(jù)挖掘中,以下哪種算法常用于對(duì)客戶進(jìn)行分類,以實(shí)現(xiàn)精準(zhǔn)營(yíng)銷?()A.決策樹(shù)算法B.聚類算法C.關(guān)聯(lián)規(guī)則挖掘算法D.神經(jīng)網(wǎng)絡(luò)算法20、數(shù)據(jù)分析中的回歸分析用于建立變量之間的定量關(guān)系。假設(shè)要建立一個(gè)線性回歸模型來(lái)預(yù)測(cè)氣溫對(duì)空調(diào)銷量的影響。如果模型的殘差呈現(xiàn)出明顯的非線性模式,可能表明什么?()A.應(yīng)該使用非線性回歸模型來(lái)改進(jìn)預(yù)測(cè)效果B.數(shù)據(jù)中存在異常值,需要進(jìn)行處理C.模型的擬合效果很好,無(wú)需進(jìn)一步改進(jìn)D.收集的數(shù)據(jù)不足以進(jìn)行有效的分析二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)描述數(shù)據(jù)挖掘中的社交網(wǎng)絡(luò)分析的主要任務(wù)和方法,如節(jié)點(diǎn)中心性分析、社區(qū)發(fā)現(xiàn)等,并舉例說(shuō)明在社交平臺(tái)數(shù)據(jù)分析中的應(yīng)用。2、(本題5分)說(shuō)明在數(shù)據(jù)分析中如何進(jìn)行數(shù)據(jù)的特征構(gòu)建和選擇以提高模型性能?請(qǐng)闡述常用的方法和技術(shù),并舉例說(shuō)明在實(shí)際項(xiàng)目中的應(yīng)用。3、(本題5分)描述數(shù)據(jù)分析中的數(shù)據(jù)預(yù)處理中的數(shù)據(jù)平滑技術(shù),如移動(dòng)平均、指數(shù)平滑等的原理和應(yīng)用場(chǎng)景,并舉例說(shuō)明。三、案例分析題(本大題共5個(gè)小題,共25分)1、(本題5分)一家在線旅游預(yù)訂平臺(tái)保存了酒店預(yù)訂數(shù)據(jù),包括酒店星級(jí)、位置、價(jià)格、預(yù)訂時(shí)間、入住時(shí)長(zhǎng)等。探討不同星級(jí)酒店在不同位置的預(yù)訂熱度和價(jià)格波動(dòng)規(guī)律。2、(本題5分)某醫(yī)院保存了患者的病歷信息、診斷結(jié)果、治療方案、用藥情況等數(shù)據(jù)。研究如何運(yùn)用這些數(shù)據(jù)輔助疾病診斷和治療方案的制定。3、(本題5分)一家在線旅游平臺(tái)的跟團(tuán)游產(chǎn)品數(shù)據(jù)包含行程安排、價(jià)格、出發(fā)地、游客評(píng)價(jià)等。探討不同行程安排和價(jià)格的跟團(tuán)游在不同出發(fā)地的受歡迎程度和游客評(píng)價(jià)。4、(本題5分)某外賣(mài)平臺(tái)的甜品類目存有商家數(shù)據(jù),包括甜品類型、銷售額、配送范圍、用戶評(píng)價(jià)等。分析不同類型甜品的銷售額與配送范圍和用戶評(píng)價(jià)的關(guān)聯(lián)。5、(本題5分)某旅游公司收集了游客的出行目的地、行程安排、消費(fèi)金額等數(shù)據(jù)。分析熱門(mén)旅游線路和游客的消費(fèi)模式,制定更有吸引力的旅游產(chǎn)品和定價(jià)策略。四、論述題(本大題共2個(gè)小題,共20分)1、(本題10分)在社交媒體的用戶增長(zhǎng)和留存中,數(shù)據(jù)分析可以制定有效的策略。以某新興社交
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 薛冰安全指南講解
- 達(dá)安深圳一體化項(xiàng)目手冊(cè)模板
- 2026年劇本殺運(yùn)營(yíng)公司行業(yè)展會(huì)參展管理制度
- 學(xué)生評(píng)價(jià)數(shù)字化改革對(duì)高校學(xué)生評(píng)價(jià)體系的影響策略研究教學(xué)研究課題報(bào)告
- 2026年旅游元宇宙應(yīng)用創(chuàng)新報(bào)告
- 保安公司上班時(shí)間制度
- 企業(yè)三個(gè)清單制度
- 中石化安委會(huì)制度
- 專業(yè)人員職稱制度
- 小手流血了安全教育課件
- JT-T 1037-2022 公路橋梁結(jié)構(gòu)監(jiān)測(cè)技術(shù)規(guī)范
- 綜合能源管理系統(tǒng)平臺(tái)方案設(shè)計(jì)及實(shí)施合集
- 共享單車(chē)對(duì)城市交通的影響研究
- 學(xué)校宿舍樓施工組織設(shè)計(jì)方案
- GB/T 7216-2023灰鑄鐵金相檢驗(yàn)
- 學(xué)術(shù)論文的撰寫(xiě)方法
- 上海市汽車(chē)維修結(jié)算工時(shí)定額(試行)
- 貴州省晴隆銻礦采礦權(quán)出讓收益評(píng)估報(bào)告
- 中心小學(xué)11-12學(xué)年度教師年度量化評(píng)分實(shí)施方案
- SH/T 1627.1-1996工業(yè)用乙腈
- JJG 1030-2007超聲流量計(jì)
評(píng)論
0/150
提交評(píng)論