版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山西省渾源縣第七中學(xué)校2026屆高二數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在空間直角坐標(biāo)系中,已知點(diǎn)M是點(diǎn)在坐標(biāo)平面內(nèi)的射影,則的坐標(biāo)是()A. B.C. D.2.點(diǎn)是正方體的底面內(nèi)(包括邊界)的動(dòng)點(diǎn).給出下列三個(gè)結(jié)論:①滿足的點(diǎn)有且只有個(gè);②滿足的點(diǎn)有且只有個(gè);③滿足平面的點(diǎn)的軌跡是線段.則上述結(jié)論正確的個(gè)數(shù)是()A. B.C. D.3.已知直線與拋物線C:相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),,的斜率分別為,,則()A. B.C. D.4.在長方體中,,,點(diǎn)分別在棱上,,,則()A. B.C. D.5.雙曲線型自然通風(fēng)塔外形是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所成的曲面,如圖所示,它的最小半徑為米,上口半徑為米,下口半徑為米,高為24米,則該雙曲線的離心率為()A.2 B.C. D.6.過點(diǎn)且與原點(diǎn)距離最大的直線方程是()A. B.C. D.7.設(shè)函數(shù),則下列函數(shù)中為奇函數(shù)的是()A. B.C. D.8.曲線與曲線的()A.長軸長相等 B.短軸長相等C.離心率相等 D.焦距相等9.已知為原點(diǎn),點(diǎn),以為直徑的圓的方程為()A. B.C. D.10.函數(shù)在定義域上是增函數(shù),則實(shí)數(shù)m的取值范圍為()A. B.C. D.11.已知復(fù)數(shù)滿足(其中為虛數(shù)單位),則復(fù)數(shù)的虛部為()A. B.C. D.12.兩圓與的公切線有()A.1條 B.2條C.3條 D.4條二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的圖象在點(diǎn)處的切線方程為____.14.在正項(xiàng)等比數(shù)列中,,,則的公比為___________.15.若經(jīng)過點(diǎn)且斜率為1的直線與拋物線交于,兩點(diǎn),則______.16.用1,2,3,4排成的無重復(fù)數(shù)字的四位數(shù)中,其中1和2不能相鄰的四位數(shù)的個(gè)數(shù)為___________(用數(shù)字作答).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)自我國爆發(fā)新冠肺炎疫情以來,各地醫(yī)療單位都加緊了醫(yī)療用品的生產(chǎn).某醫(yī)療器械廠統(tǒng)計(jì)了口罩生產(chǎn)車間每名工人的生產(chǎn)速度,并將所得數(shù)據(jù)分成五組并繪制出如圖所示的頻率分布直方圖.已知前四組的頻率成等差數(shù)列,第五組與第二組的頻率相等(1)估計(jì)口罩生產(chǎn)車間工人生產(chǎn)速度的中位數(shù)(結(jié)果寫成分?jǐn)?shù)的形式);(2)為了解該車間工人生產(chǎn)速度是否與他們的工作經(jīng)驗(yàn)有關(guān),現(xiàn)從車間所有工人中隨機(jī)抽樣調(diào)查了5名工人的生產(chǎn)速度以及他們的工齡(參加工作的年限),數(shù)據(jù)如下表:工齡x(單位:年)4681012生產(chǎn)速度y(單位:件/小時(shí))4257626267根據(jù)上述數(shù)據(jù)求每名工人的生產(chǎn)速度y關(guān)于他的工齡x的回歸方程,并據(jù)此估計(jì)該車間某位有16年工齡的工人的生產(chǎn)速度附:回歸方程中斜率和截距的最小二乘估計(jì)公式為:,18.(12分)已知圓C的圓心在直線上,且經(jīng)過點(diǎn)和(1)求圓C的標(biāo)準(zhǔn)方程;(2)若過點(diǎn)的直線l與圓C交于A,B兩點(diǎn),且,求直線l的方程19.(12分)已知數(shù)列滿足,數(shù)列為等差數(shù)列,,前4項(xiàng)和.(1)求數(shù)列,的通項(xiàng)公式;(2)求和:.20.(12分)已知拋物線的焦點(diǎn),點(diǎn)在拋物線上.(1)求;(2)過點(diǎn)向軸作垂線,垂足為,過點(diǎn)的直線與拋物線交于兩點(diǎn),證明:為直角三角形(為坐標(biāo)原點(diǎn)).21.(12分)已知橢圓焦距為,點(diǎn)在橢圓C上(1)求橢圓C的方程;(2)過點(diǎn)的直線與C交于M,N兩點(diǎn),點(diǎn)R是直線上任意一點(diǎn),設(shè)直線的斜率分別為,若,求的方程22.(10分)已知命題:方程表示焦點(diǎn)在軸上的雙曲線,命題:關(guān)于的方程無實(shí)根(1)若命題為真命題,求實(shí)數(shù)的取值范圍;(2)若“”為假命題,"”為真命題,求實(shí)數(shù)的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】點(diǎn)在平面內(nèi)的射影是坐標(biāo)不變,坐標(biāo)為0的點(diǎn).【詳解】點(diǎn)在坐標(biāo)平面內(nèi)的射影為,故點(diǎn)M的坐標(biāo)是故選:C2、C【解析】對(duì)于①,根據(jù)線線平行的性質(zhì)可知點(diǎn)即為點(diǎn),因此可判斷①正確;對(duì)于②,根據(jù)線面垂直的判定可知平面,,由此可判定的位置,進(jìn)而判定②的正誤;對(duì)于③,根據(jù)面面平行可判定平面平面,因此可判斷此時(shí)一定落在上,由此可判斷③的正誤.【詳解】如圖:對(duì)于①,在正方體中,,若異于,則過點(diǎn)至少有兩條直線和平行,這是不可能的,因此底面內(nèi)(包括邊界)滿足的點(diǎn)有且只有個(gè),即為點(diǎn),故①正確;對(duì)于②,正方體中,平面,平面,所以,又,所以,而,平面,故平面,因此和垂直的直線一定落在平面內(nèi),由是平面上的動(dòng)點(diǎn)可知,一定落在上,這樣的點(diǎn)有無數(shù)多個(gè),故②錯(cuò)誤;對(duì)于③,,平面,則平面,同理平面,而,所以平面平面,而平面,所以一定落在平面上,由是平面上的動(dòng)點(diǎn)可知,此時(shí)一定落在上,即點(diǎn)的軌跡是線段,故③正確,故選:C.3、C【解析】設(shè),,由消得:,又,由韋達(dá)定理代入計(jì)算即可得答案.【詳解】設(shè),,由消得:,所以,故.故選:C【點(diǎn)睛】本題主要考查了直線與拋物線的位置關(guān)系,直線的斜率公式,考查了轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運(yùn)算求解能力.4、D【解析】依題意可得,從而得到,即可得到,從而得解;【詳解】解:由長方體的性質(zhì)可得,又,所以,因?yàn)?,所以,所以,因?yàn)?,所以;故選:D5、A【解析】以的中點(diǎn)О為坐標(biāo)原點(diǎn),建立平面直角坐標(biāo)系,設(shè)雙曲線的方程為,設(shè),,代入雙曲線的方程,求得,得到,進(jìn)而求得雙曲線的離心率.【詳解】以的中點(diǎn)О為坐標(biāo)原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,則,設(shè)雙曲線的方程為,則,可設(shè),,又由,在雙曲線上,所以,解得,,即,所以該雙曲線的離心率為.故選:A.第II卷6、A【解析】過點(diǎn)且與原點(diǎn)O距離最遠(yuǎn)的直線垂直于直線,再由點(diǎn)斜式求解即可【詳解】過點(diǎn)且與原點(diǎn)O距離最遠(yuǎn)的直垂直于直線,,∴過點(diǎn)且與原點(diǎn)O距離最遠(yuǎn)的直線的斜率為,∴過點(diǎn)且與原點(diǎn)O距離最遠(yuǎn)的直線方程為:,即.故選:A7、A【解析】求出函數(shù)圖象的對(duì)稱中心,結(jié)合函數(shù)圖象平移變換可得結(jié)果.【詳解】因?yàn)?,所以,,所以,函?shù)圖象的對(duì)稱中心為,將函數(shù)的圖象向右平移個(gè)單位,再將所得圖象向下平移個(gè)單位長度,可得到奇函數(shù)的圖象,即函數(shù)為奇函數(shù).故選:A8、D【解析】分別求出兩曲線表示的橢圓的位置,長軸長、短軸長、離心率和焦距,比較可得答案.【詳解】曲線表示焦點(diǎn)在x軸上的橢圓,長軸長為10,短軸長為6,離心率為,焦距為8,曲線焦點(diǎn)在x軸上的橢圓,長軸長為,短軸長為,離心率為,焦距為,故選:D9、A【解析】求圓的圓心和半徑,根據(jù)圓的標(biāo)準(zhǔn)方程即可求解﹒【詳解】由題知圓心為,半徑,∴圓方程為﹒故選:A﹒10、A【解析】根據(jù)導(dǎo)數(shù)與單調(diào)性的關(guān)系即可求出【詳解】依題可知,在上恒成立,即在上恒成立,所以故選:A11、A【解析】由題目條件可得,即,然后利用復(fù)數(shù)的運(yùn)算法則化簡.【詳解】因?yàn)?,所以,則故復(fù)數(shù)的虛部為.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的相關(guān)概念及復(fù)數(shù)的乘除運(yùn)算,按照復(fù)數(shù)的運(yùn)算法則化簡計(jì)算即可,較簡單.12、D【解析】求得圓心坐標(biāo)分別為,半徑分別為,根據(jù)圓圓的位置關(guān)系的判定方法,得出兩圓的位置關(guān)系,即可求解.【詳解】由題意,圓與圓,可得圓心坐標(biāo)分別為,半徑分別為,則,所以,可得圓外離,所以兩圓共有4條切線.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出導(dǎo)函數(shù),進(jìn)而根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率,然后求出切線方程.【詳解】由題意,,,則切線方程為:.故答案為:.14、3【解析】由題設(shè)知等比數(shù)列公比,根據(jù)已知條件及等比數(shù)列通項(xiàng)公式列方程求公比即可.【詳解】由題設(shè),等比數(shù)列公比,且,所以,可得或(舍),故公比為3.故答案為:315、【解析】由題意寫出直線的方程與拋物線方程聯(lián)立,得出韋達(dá)定理,由弦長公式可得答案.【詳解】設(shè),則直線的方程為由,得所以所以故答案為:16、【解析】利用插空法計(jì)算出正確答案.【詳解】先排,形成個(gè)空位,然后將排入,所以符合題意的四位數(shù)的個(gè)數(shù)為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)80件/小時(shí)【解析】(1)先利用等差數(shù)列的通項(xiàng)公式和頻率分布直方圖各矩形的面積之和為1求出各組頻率,再利用頻率分布直方圖求中位數(shù);(2)先求出、,利用最小二乘法求出回歸直線方程,再進(jìn)行預(yù)測其生產(chǎn)速度.【小問1詳解】解:設(shè)前4組的頻率分別為,,,,公差為,由頻率分布直方圖,得,即,解得,則,,所以中位數(shù)為.【小問2詳解】解:由題意,得,,由所給公式,得,,所以回歸直線方程為,則當(dāng)時(shí),,即估計(jì)該車間某位有16年工齡的工人的生產(chǎn)速度為80件/小時(shí).18、(1)(2)或【解析】(1)點(diǎn)和的中垂線經(jīng)過圓心,兩直線聯(lián)立方程得圓心坐標(biāo),再利用兩點(diǎn)間距離公式求解半徑.(2)已知弦長,求解直線方程,分類討論斜率是否存在.小問1詳解】點(diǎn)和的中點(diǎn)為,,所以中垂線的,利用點(diǎn)斜式得方程為,聯(lián)立方程得圓心坐標(biāo)為,所以圓C的標(biāo)準(zhǔn)方程為.【小問2詳解】當(dāng)過點(diǎn)的直線l斜率不存在時(shí),直線方程為,此時(shí)弦長,符合題意.當(dāng)過點(diǎn)的直線l斜率存在時(shí),設(shè)直線方程為,化簡得,弦心距,所以,解得,所以直線方程為.綜上所述直線方程為或.19、(1),;(2).【解析】(1)根據(jù)等比數(shù)列的定義,結(jié)合等差數(shù)列的基本量,即可容易求得數(shù)列,的通項(xiàng)公式;(2)根據(jù)(1)中所求,構(gòu)造數(shù)列,證明其為等比數(shù)列,利用等比數(shù)列的前項(xiàng)和即可求得結(jié)果.【小問1詳解】因?yàn)閿?shù)列滿足,故可得數(shù)列為等比數(shù)列,且公比,則;數(shù)列為等差數(shù)列,,前4項(xiàng)和,設(shè)其公差為,故可得,解得,則;綜上所述,,.【小問2詳解】由(1)可知:,,故,又,又,則是首項(xiàng)1,公比為的等比數(shù)列;則.20、(1)(2)證明見解析【解析】(1)點(diǎn)代入即可得出拋物線方程,根據(jù)拋物線的定義即可求得.(2)由題,設(shè)直線的方程為:,與拋物線方程聯(lián)立,可得,利用韋達(dá)定理證得即可得出結(jié)論.【小問1詳解】點(diǎn)在拋物線上.,則,所以.【小問2詳解】證明:由題,設(shè)直線的方程為:,點(diǎn)聯(lián)立方程,消得:,由韋達(dá)定理有,由,所以,所以,所以,所以為直角三角形.21、(1);(2).【解析】(1)由焦距為解出,再把點(diǎn)代入橢圓方程中,即可解出答案.(2)根據(jù)題意求出當(dāng)直線與軸重合時(shí),由求出值,即求出的方程為.故只需證:當(dāng)直線與軸不重合時(shí),上任意一點(diǎn)均使,設(shè)出直線方程與橢圓進(jìn)行聯(lián)立,化簡得證,即可得到答案.【小問1詳解】.由于點(diǎn)在橢圓C上,則故橢圓C的方程為.【小問2詳解】當(dāng)直線與軸重合時(shí),是橢圓的左右頂點(diǎn),不妨設(shè),設(shè),則是上的任意一點(diǎn),即方程對(duì)任意實(shí)數(shù)都成立,此時(shí)的方程為.故只需
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026湖北恩施州宣恩縣園投人力資源服務(wù)有限公司招聘湖北省宣恩縣第一中學(xué)4人備考題庫及答案詳解(新)
- 2026紹興理工學(xué)院招聘32人備考題庫及完整答案詳解
- 跨境貿(mào)易出口信用保險(xiǎn)操作手冊(cè)
- 2026河南鄭州市鞏義市國有資產(chǎn)投資經(jīng)營有限公司招聘10人備考題庫及完整答案詳解
- 2026年數(shù)字出版全流程管理課程
- 職業(yè)共病管理中的法規(guī)政策解讀
- 職業(yè)健康監(jiān)護(hù)中的風(fēng)險(xiǎn)溝通與公眾參與
- 職業(yè)健康宣教材料在康復(fù)中的設(shè)計(jì)應(yīng)用
- 長沙2025年湖南長沙縣百熙教育集團(tuán)(春華中學(xué))校聘教師招聘11人筆試歷年參考題庫附帶答案詳解
- 連云港2025年江蘇連云港東??h縣直學(xué)校選聘教師101人筆試歷年參考題庫附帶答案詳解
- 裝修工程施工質(zhì)量檢查標(biāo)準(zhǔn)
- 供銷大集:中國供銷商貿(mào)流通集團(tuán)有限公司擬對(duì)威海集采集配商貿(mào)物流有限責(zé)任公司增資擴(kuò)股所涉及的威海集采集配商貿(mào)物流有限責(zé)任公司股東全部權(quán)益價(jià)值資產(chǎn)評(píng)估報(bào)告
- 干細(xì)胞臨床研究:知情同意的倫理審查要點(diǎn)
- 檢測實(shí)驗(yàn)室安全管理與操作規(guī)程
- 2025云南保山電力股份有限公司招聘(100人)筆試歷年參考題庫附帶答案詳解
- (新教材)2026年人教版八年級(jí)下冊(cè)數(shù)學(xué) 21.1 四邊形及多邊形 課件
- 教師職業(yè)行為規(guī)范手冊(cè)
- 急性胸痛患者的快速識(shí)別與護(hù)理配合
- 現(xiàn)代混凝土試驗(yàn)與檢測 課件 11混凝土拌合物凝結(jié)時(shí)間檢測計(jì)算實(shí)例
- 中國血液透析血管通路超聲介入治療專家共識(shí)(2024 年版)解讀
- GB/T 44828-2024葡萄糖氧化酶活性檢測方法
評(píng)論
0/150
提交評(píng)論