2025年大學本科(機械工程)機械振動分析綜合測試題及答案_第1頁
2025年大學本科(機械工程)機械振動分析綜合測試題及答案_第2頁
2025年大學本科(機械工程)機械振動分析綜合測試題及答案_第3頁
2025年大學本科(機械工程)機械振動分析綜合測試題及答案_第4頁
2025年大學本科(機械工程)機械振動分析綜合測試題及答案_第5頁
全文預覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025年大學本科(機械工程)機械振動分析綜合測試題及答案

(考試時間:90分鐘滿分100分)班級______姓名______第I卷(選擇題共30分)答題要求:本卷共6題,每題5分。在每題給出的四個選項中,只有一項是符合題目要求的。請將正確答案的序號填在括號內(nèi)。1.對于單自由度線性振動系統(tǒng),其振動頻率與以下哪個因素無關(guān)()A.系統(tǒng)的質(zhì)量B.系統(tǒng)的剛度C.系統(tǒng)的阻尼D.初始條件2.當一個簡諧振動的振幅增大為原來的2倍時,其振動能量變?yōu)樵瓉淼模ǎ〢.2倍B.4倍C.8倍D.16倍3.已知某振動系統(tǒng)的固有頻率為ωn,當系統(tǒng)受到頻率為ω的簡諧激勵時,發(fā)生共振的條件是()A.ω=ωnB.ω>ωnC.ω<ωnD.ω與ωn無關(guān)4.對于一個粘性阻尼振動系統(tǒng),阻尼比ζ的取值范圍通常是()A.ζ<0B.ζ=0C.0<ζ<∞D(zhuǎn).ζ>15.兩自由度振動系統(tǒng)的振動方程通常是()A.一階常微分方程B.二階常微分方程C.高階常微分方程D.偏微分方程6.當一個振動系統(tǒng)的阻尼比ζ=0.5時,其振動狀態(tài)為()A.無阻尼振動B.欠阻尼振動C.臨界阻尼振動D.過阻尼振動第II卷(非選擇題共70分)填空題(共20分)答題要求:本大題共4小題,每空2分。請將答案填寫在題中的橫線上。1.機械振動按振動規(guī)律可分為______振動、______振動和______振動。2.單自由度無阻尼線性振動系統(tǒng)的運動方程為______。3.振動系統(tǒng)的固有頻率ωn可通過公式______計算。4.對于粘性阻尼振動系統(tǒng),阻尼力的表達式為______。簡答題(共20分)答題要求:本大題共2小題,每題10分。簡要回答問題。1.簡述簡諧振動的特點。2.說明共振對機械系統(tǒng)的危害及防止共振的方法。計算題(共20分)答題要求:本大題共2小題,每題10分。解答應(yīng)寫出必要的文字說明、計算步驟和答案。1.已知一單自由度無阻尼振動系統(tǒng),質(zhì)量m=2kg,剛度k=8N/m,求其固有頻率ωn。2.某粘性阻尼振動系統(tǒng),質(zhì)量m=1kg,剛度k=4N/m,阻尼比ζ=0.2,求其振動方程。分析題(共10分)答題要求:閱讀以下材料,回答問題。材料:在某機械系統(tǒng)中,存在一個振動部件。通過測試發(fā)現(xiàn),該部件在工作過程中出現(xiàn)了異常振動。經(jīng)分析,發(fā)現(xiàn)其振動頻率接近系統(tǒng)的固有頻率。問題:請分析該異常振動可能產(chǎn)生的原因,并提出相應(yīng)的解決措施。設(shè)計題(共10分)答題要求:設(shè)計一個單自由度線性振動系統(tǒng),要求滿足以下條件:固有頻率ωn=5rad/s,質(zhì)量m=1kg。請計算出系統(tǒng)所需的剛度k。答案:第I卷1.D2.B3.A4.C5.B6.B第II卷填空題1.簡諧振動、非簡諧周期振動、隨機振動2.$m\ddot{x}+kx=0$3.$\omega_n=\sqrt{\frac{k}{m}}$4.$F_c=c\dot{x}$簡答題1.簡諧振動的特點:振動位移隨時間按正弦或余弦規(guī)律變化;振動速度和加速度也隨時間按正弦或余弦規(guī)律變化;振動具有固定的頻率和振幅;振動過程中機械能守恒。2.共振對機械系統(tǒng)的危害:會使系統(tǒng)的振幅急劇增大,可能導致系統(tǒng)零部件的損壞、疲勞壽命縮短、精度下降等。防止共振的方法:改變系統(tǒng)的固有頻率,使其遠離激勵頻率;增加系統(tǒng)的阻尼,減小共振時的振幅;采用隔振、減振裝置,減少共振的影響。計算題1.已知$m=2kg$,$k=8N/m$,根據(jù)$\omega_n=\sqrt{\frac{k}{m}}$,可得$\omega_n=\sqrt{\frac{8}{2}}=2rad/s$。2.已知$m=1kg$,$k=4N/m$,$\zeta=0.2$。先求固有頻率$\omega_n=\sqrt{\frac{k}{m}}=\sqrt{\frac{4}{1}}=2rad/s$。阻尼振動方程為$x=e^{-\zeta\omega_nt}(A\cos\omega_dt+B\sin\omega_dt)$,其中$\omega_d=\omega_n\sqrt{1-\zeta^2}=2\sqrt{1-0.2^2}\approx1.96rad/s$。分析題原因:部件振動頻率接近系統(tǒng)固有頻率,發(fā)生了共振。解決措施:可以通過改變部件的質(zhì)量或剛度來改變系統(tǒng)的固有頻率,使其遠離工作頻率;也可以增加系統(tǒng)的阻尼,如在部件上添加阻尼材料,以減小共振時的振幅。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論