版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
吉林省遼源市田家炳高中2026屆高一數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.計算的值為A. B.C. D.2.設(shè),,則()A. B.C. D.3.已知是角的終邊上的點,則()A. B.C. D.4.已知實數(shù),滿足,,則的最大值為()A. B.1C. D.25.函數(shù)的零點所在區(qū)間為A. B.C. D.6.命題,一元二次方程有實根,則()A.,一元二次方程沒有實根B.,一元二次方程沒有實根C.,一元二次方程有實根D.,一元二次方程有實根7.設(shè)全集U=R,集合A={x|0<x<4},集合B={x|3≤x<5},則A∩(?UB)=()A. B.C. D.8.已知向量,,則下列結(jié)論正確的是()A.// B.C. D.9.有一組實驗數(shù)據(jù)如下表所示:x2.0134.015.16.12y38.011523.836.04則最能體現(xiàn)這組數(shù)據(jù)關(guān)系的函數(shù)模型是()A. B.C. D.10.青少年視力是社會普遍關(guān)注的問題,視力情況可借助視力表測量.通常用五分記錄法和小數(shù)記錄法記錄視力數(shù)據(jù),五分記錄法的數(shù)據(jù)L和小數(shù)記錄表的數(shù)據(jù)V的滿足.已知某同學(xué)視力的五分記錄法的數(shù)據(jù)為4.9,則其視力的小數(shù)記錄法的數(shù)據(jù)為()()A.1.5 B.1.2C.0.8 D.0.6二、填空題:本大題共6小題,每小題5分,共30分。11.冪函數(shù)為偶函數(shù)且在區(qū)間上單調(diào)遞減,則________,________.12.______________.13.如果對任意實數(shù)x總成立,那么a的取值范圍是____________.14.不等式的解為______15.若直線與垂直,則________16.給出下列命題:①存在實數(shù),使;②函數(shù)是偶函數(shù);③若是第一象限角,且,則;④是函數(shù)的一條對稱軸方程以上命題是真命題的是_______(填寫序號)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(,)為奇函數(shù),且相鄰兩對稱軸間的距離為(1)當時,求的單調(diào)遞減區(qū)間;(2)將函數(shù)的圖象沿軸方向向右平移個單位長度,再把橫坐標縮短到原來的(縱坐標不變),得到函數(shù)的圖象.當時,求函數(shù)的值域18.已知函數(shù)(,)(1)若關(guān)于的不等式的解集為,求不等式的解集;(2)若,,求關(guān)于的不等式的解集19.在①兩個相鄰對稱中心的距離為,②兩條相鄰對稱軸的距離為,③兩個相鄰最高點的距離為,這三個條件中任選一個,補充在下面問題中,并對其求解問題:函數(shù)的圖象過點,且滿足__________.當時,,求的值.注:如果選擇多個條件分別解答,按第一個解答計分20.已知函數(shù).(1)判斷并證明的奇偶性;(2)求函數(shù)在區(qū)間上的最小值和最大值.21.已知函數(shù)求函數(shù)的最小正周期與對稱中心;求函數(shù)的單調(diào)遞增區(qū)間
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】直接由二倍角的余弦公式,即可得解.【詳解】由二倍角公式得:,故選D.【點睛】本題考查了二倍角的余弦公式,屬于基礎(chǔ)題.2、A【解析】由對數(shù)函數(shù)的圖象和性質(zhì)知,,則.又因為,根據(jù)已知可算出其取值范圍,進而得到答案.【詳解】解:因為,,所以,又+,所以,所以.故選:A.3、A【解析】根據(jù)三角函數(shù)的定義求解即可.【詳解】因為為角終邊上的一點,所以,,,所以故選:A4、C【解析】運用三角代換法,結(jié)合二倍角的正弦公式、正弦型函數(shù)的最值進行求解【詳解】由,得,令,則,因為,所以,即,所以的最大值為,故選:C5、C【解析】要判斷函數(shù)的零點位置,我們可以根據(jù)零點存在定理,依次判斷區(qū)間的兩個端點對應(yīng)的函數(shù)值,然后根據(jù)連續(xù)函數(shù)在區(qū)間上零點,則與異號進行判斷【詳解】,,故函數(shù)的零點必落在區(qū)間故選C【點睛】本題考查的知識點是函數(shù)的零點,解答的關(guān)鍵是零點存在定理:即連續(xù)函數(shù)在區(qū)間上與異號,則函數(shù)在區(qū)間上有零點6、B【解析】根據(jù)全稱命題的否定為特稱命題可得出.【詳解】因為全稱命題的否定為特稱命題,所以,一元二次方程沒有實根.故選:B.7、D【解析】先求?UB,然后求A∩(?UB)【詳解】∵(?UB)={x|x<3或x≥5},∴A∩(?UB)={x|0<x<3}故選D【點睛】本題主要考查集合的基本運算,比較基礎(chǔ)8、B【解析】采用排除法,根據(jù)向量平行,垂直以及模的坐標運算,可得結(jié)果【詳解】因為,所以A不成立;由題意得:,所以,所以B成立;由題意得:,所以,所以C不成立;因為,,所以,所以D不成立.故選:B.【點睛】本題主要考查向量的坐標運算,屬基礎(chǔ)題.9、D【解析】將各點分別代入各函數(shù),即可求出【詳解】將各點分別代入各函數(shù)可知,最能體現(xiàn)這組數(shù)據(jù)關(guān)系的函數(shù)模型是故選:D10、C【解析】根據(jù)關(guān)系,當時,求出,再用指數(shù)表示,即可求解.【詳解】由,當時,,則.故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、(1).或3(2).4【解析】根據(jù)題意可得:【詳解】區(qū)間上單調(diào)遞減,,或3,當或3時,都有,,.故答案為:或3;4.12、2【解析】由對數(shù)的運算法則直接求解.【詳解】故答案為:213、【解析】先利用絕對值三角不等式求出的最小值,進而求出a的取值范圍.【詳解】,當且僅當時等號成立,故,所以a的取值范圍是.故答案為:14、【解析】根據(jù)冪函數(shù)的性質(zhì),分類討論即可【詳解】將不等式轉(zhuǎn)化成(Ⅰ),解得;(Ⅱ),解得;(Ⅲ),此時無解;綜上,不等式的解集為:故答案為:15、【解析】根據(jù)兩直線垂直的等價條件列方程,解方程即可求解.【詳解】因為直線與垂直,所以,解得:,故答案為:.16、②④【解析】根據(jù)三角函數(shù)的性質(zhì),依次分析各選項即可得答案.【詳解】解:①因為,故不存在實數(shù),使得成立,錯誤;②函數(shù),由于是偶函數(shù),故是偶函數(shù),正確;③若,均為第一象限角,顯然,故錯誤;④當時,,由于是函數(shù)的一條對稱軸,故是函數(shù)的一條對稱軸方程,正確.故正確的命題是:②④故答案為:②④三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),](2)值域為[,]【解析】(1)利用三角恒等變換化簡的解析式,根據(jù)條件,可求出周期和,結(jié)合奇函數(shù)性質(zhì),求出,再用整體代入法求出內(nèi)的遞減區(qū)間;(2)利用函數(shù)的圖象變換規(guī)律,求出的解析式,再利用正弦函數(shù)定義域,即可求出時的值域.【詳解】解:(1)由題意得,因相鄰兩對稱軸之間距離為,所以,又因為函數(shù)為奇函數(shù),所以,∴,因為,所以故函數(shù)令.得.令得,因為,所以函數(shù)的單調(diào)遞減區(qū)間為,](2)由題意可得,因為,所以所以,.即函數(shù)的值域為[,]【點睛】本題主要考查正弦函數(shù)在給定區(qū)間內(nèi)的單調(diào)性和值域,包括周期性,奇偶性,單調(diào)性和最值,還涉及三角函數(shù)圖像的平移伸縮和三角恒等變換中的輔助角公式.18、(1)(2)當時,不等式的解集為;當時,不等式的解集為;當時,不等式的解集為【解析】(1)根據(jù)題意可得,且,3是方程的兩個實數(shù)根,利用韋達定理得到方程組,求出,,進一步可得不等式等價于,即,最后求解不等式即可;(2)當時,時,不等式等價于,從而分類討論,,三種情況即可求出不等式所對應(yīng)的解集【小問1詳解】解:的不等式的解集為,,且,3是方程的兩個實數(shù)根,,,解得,,不等式等價于,即,故,解得或,所以該不等式的解集為;【小問2詳解】解:當時,不等式等價于,即,又,所以不等式等價于,當,即時,不等式為,解得;當,即時,解不等式得或;當,即時,解不等式得或,綜上,當時,不等式的解集為,當時,不等式的解集為,當時,不等式的解集為19、選①②③,答案相同,均為【解析】選①②可以得到最小正周期,從而得到,結(jié)合圖象過的點,可求出,從而得到,進而得到,接下來用湊角法求出的值;選③,可以直接得到最小正周期,接下來過程與選①②相同.【詳解】選①②:由題意得:的最小正周期,則,結(jié)合,解得:,因為圖象過點,所以,因為,所以,所以,因為,所以,因為,所以,所以,;選③:由題意得:的最小正周期,則,結(jié)合,解得:,因為圖象過點,所以,因為,所以,所以,因為,所以,因為,所以,所以,;20、(1)奇函數(shù),證明見解析;(2)最小值為,最大值為.【解析】(1)利用函數(shù)奇偶性的定義證明即可;(2)設(shè),可知函數(shù)為增函數(shù),由,可得出,且有,將問題轉(zhuǎn)化為二次函數(shù)在上的最值問題,利用二次函數(shù)的基本性質(zhì)求解即可.【詳解】(1)函數(shù)定義域為,關(guān)于原點對稱,,因此,函數(shù)為奇函數(shù);(2)設(shè),由于函數(shù)為增函數(shù),函數(shù)為減函數(shù),所以,函數(shù)為增函數(shù),當時,則,且,則,令,.所以,,.【點睛】本題考查函數(shù)奇偶性的證明,同時也考查了指數(shù)型函數(shù)在區(qū)間上最值的求解,利用換元法轉(zhuǎn)化為二次函數(shù)的最值問題是解題的關(guān)鍵,考查化歸與轉(zhuǎn)化思想的應(yīng)用,屬于中等題.21、(1)最小正周期,對稱中心為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 消化內(nèi)科患者的家庭護理支持
- 麻醉科規(guī)培試題及答案
- 新三板題庫及答案
- 兒科基礎(chǔ)護理知識試題及答案
- 財稅應(yīng)用師考試題及答案
- 機構(gòu)考試題及答案
- 醫(yī)學(xué)影像技術(shù)??荚囶}(附參考答案)
- 一級螞蟻知識競賽題及答案
- 結(jié)構(gòu)與設(shè)計試題及答案
- 2025年醫(yī)院感染考試試題及參考答案
- 2025-2026學(xué)年人教版(2024)初中生物八年級上冊教學(xué)計劃及進度表
- 醫(yī)療衛(wèi)生輿情課件模板
- 高壓注漿施工方案(3篇)
- 高強混凝土知識培訓(xùn)課件
- (高清版)DB11∕T 1455-2025 電動汽車充電基礎(chǔ)設(shè)施規(guī)劃設(shè)計標準
- 暖通工程施工環(huán)保措施
- 宗族團年活動方案
- 2025至2030中國碳納米管行業(yè)市場發(fā)展分析及風(fēng)險與對策報告
- 車企核心用戶(KOC)分層運營指南
- 兒童課件小學(xué)生講繪本成語故事《69狐假虎威》課件
- 湖北中煙2025年招聘綜合測試
評論
0/150
提交評論