版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省贛州市會(huì)昌中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末復(fù)習(xí)檢測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若函數(shù)恰好有個(gè)不同的零點(diǎn),則的取值范圍是()A. B.C. D.2.已知直線的一個(gè)方向向量為,則直線的傾斜角為()A. B.C. D.3.在等比數(shù)列中,若,則公比()A. B.C.2 D.34.若復(fù)數(shù)的模為2,則的最大值為()A. B.C. D.5.設(shè)函數(shù)的圖象為C,則下面結(jié)論中正確的是()A.函數(shù)的最小正周期是B.圖象C關(guān)于點(diǎn)對(duì)稱C.函數(shù)在區(qū)間上是增函數(shù)D.圖象C可由函數(shù)的圖象向右平移個(gè)單位得到6.已知矩形,,,沿對(duì)角線將折起,若二面角的余弦值為,則與之間距離為()A. B.C. D.7.若圓上至少有三個(gè)點(diǎn)到直線的距離為1,則半徑的取值范圍是()A. B.C. D.8.已知直線經(jīng)過點(diǎn),且是的方向向量,則點(diǎn)到的距離為()A. B.C. D.9.的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若,則()A. B.C. D.10.我們知道,償還銀行貸款時(shí),“等額本金還款法”是一種很常見的還款方式,其本質(zhì)是將本金平均分配到每一期進(jìn)行償還,每一期的還款金額由兩部分組成,一部分為每期本金,即貸款本金除以還款期數(shù),另一部分是利息,即貸款本金與已還本金總額的差乘以利率.自主創(chuàng)業(yè)的大學(xué)生張華向銀行貸款的本金為48萬元,張華跟銀行約定,按照等額本金還款法,每個(gè)月還一次款,20年還清,貸款月利率為,設(shè)張華第個(gè)月的還款金額為元,則()A.2192 B.C. D.11.命題“?x0∈(0,+∞),”的否定是()A.?x∈(﹣∞,0),2x+sinx≥0B.?x∈(0,+∞),2x+sinx≥0C.?x0∈(0,+∞),D.?x0∈(﹣∞,0),12.若直線與直線平行,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線上一點(diǎn)到準(zhǔn)線的距離為,到直線:的距離為,則的最小值為__________14.如圖所示,在直二面角D-AB-E中,四邊形ABCD是邊長為2的正方形,△AEB是等腰直角三角形,其中,則點(diǎn)D到平面ACE的距離為________15.已知滿足約束條件,則的最小值為___________16.已知橢圓的左焦點(diǎn)為,點(diǎn)在橢圓上且在軸的上方,若線段的中點(diǎn)在以原點(diǎn)為圓心,為半徑的圓上,則直線的斜率是_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線中心在原點(diǎn),離心率為2,一個(gè)焦點(diǎn)(1)求雙曲線方程;(2)設(shè)Q是雙曲線上一點(diǎn),且過點(diǎn)F、Q的直線l與y軸交于點(diǎn)M,若,求直線l的方程18.(12分)在平面直角坐標(biāo)系xOy中,已知橢圓E:(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為.點(diǎn)P是橢圓上的一動(dòng)點(diǎn),且P在第一象限.記的面積為S,當(dāng)時(shí),.(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)如圖,PF1,PF2的延長線分別交橢圓于點(diǎn)M,N,記和的面積分別為S1和S2.(i)求證:存在常數(shù)λ,使得成立;(ii)求S2-S1的最大值.19.(12分)區(qū)塊鏈技術(shù)被認(rèn)為是繼蒸汽機(jī)、電力、互聯(lián)網(wǎng)之后,下一代顛覆性的核心技術(shù)區(qū)塊鏈作為構(gòu)造信任的機(jī)器,將可能徹底改變整個(gè)人類社會(huì)價(jià)值傳遞的方式,2015年至2019年五年期間,中國的區(qū)塊鏈企業(yè)數(shù)量逐年增長,居世界前列現(xiàn)收集我國近5年區(qū)塊鏈企業(yè)總數(shù)量相關(guān)數(shù)據(jù),如表年份20152016201720182019編號(hào)x12345企業(yè)總數(shù)量y(單位:千個(gè))2.1563.7278.30524.27936.224注:參考數(shù)據(jù),,,(其中).附:樣本的最小二乘法估計(jì)公式為,(1)根據(jù)表中數(shù)據(jù)判斷,與(其中,為自然對(duì)數(shù)的底數(shù)),哪一個(gè)回歸方程類型適宜預(yù)測(cè)未來幾年我國區(qū)塊鏈企業(yè)總數(shù)量?(給出結(jié)果即可,不必說明理由)(2)根據(jù)(1)的結(jié)果,求y關(guān)于x的回歸方程;(3)為了促進(jìn)公司間的合作與發(fā)展,區(qū)塊鏈聯(lián)合總部決定進(jìn)行一次信息化技術(shù)比賽,邀請(qǐng)甲、乙、丙三家區(qū)塊鏈公司參賽比賽規(guī)則如下:①每場(chǎng)比賽有兩個(gè)公司參加,并決出勝負(fù);②每場(chǎng)比賽獲勝的公司與未參加此場(chǎng)比賽的公司進(jìn)行下一場(chǎng)的比賽;③在比賽中,若有一個(gè)公司首先獲勝兩場(chǎng),則本次比賽結(jié)束,該公司就獲得此次信息化比賽的“優(yōu)勝公司”,已知在每場(chǎng)比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為,若首場(chǎng)由甲乙比賽,則求甲公司獲得“優(yōu)勝公司”的概率.20.(12分)已知的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且(1)求;(2)若,求的面積的最大值21.(12分)如圖,在四棱錐S?ABCD中,已知四邊形ABCD是邊長為的正方形,點(diǎn)S在底面ABCD上的射影為底面ABCD的中心點(diǎn)O,點(diǎn)P在棱SD上,且△SAC的面積為1(1)若點(diǎn)P是SD的中點(diǎn),求證:平面SCD⊥平面PAC;(2)在棱SD上是否存在一點(diǎn)P使得二面角P?AC?D的余弦值為?若存在,求出點(diǎn)P的位置;若不存在,說明理由22.(10分)在平面直角坐標(biāo)系xOy中,已知橢圓C:的焦距為4,且過點(diǎn).(1)求橢圓C的方程;(2)設(shè)橢圓C的上頂點(diǎn)為B,右焦點(diǎn)為F,直線l與橢圓交于M,N兩點(diǎn),問是否存在直線l,使得F為的垂心(高的交點(diǎn)),若存在,求出直線l的方程:若不存在,請(qǐng)說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】分析可知,直線與函數(shù)的圖象有個(gè)交點(diǎn),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與極值,數(shù)形結(jié)合可求得實(shí)數(shù)的取值范圍.【詳解】令,可得,構(gòu)造函數(shù),其中,由題意可知,直線與函數(shù)的圖象有個(gè)交點(diǎn),,由,可得或,列表如下:增極大值減極小值增所以,,,作出直線與函數(shù)的圖象如下圖所示:由圖可知,當(dāng)時(shí),即當(dāng)時(shí),直線與函數(shù)的圖象有個(gè)交點(diǎn),即函數(shù)有個(gè)零點(diǎn).故選:D.2、A【解析】由直線斜率與方向向量的關(guān)系算出斜率,然后可得.【詳解】記直線的傾斜角為,由題知,又,所以,即.故選:A3、C【解析】由題得,化簡(jiǎn)即得解.【詳解】因?yàn)椋?,所以,解?故選:C4、A【解析】由題意得,表示以為圓心,2為半徑的圓,表示過原點(diǎn)和圓上的點(diǎn)的直線的斜率,由圖可知,當(dāng)直線與圓相切時(shí),取得最值,然后求出切線的斜率即可【詳解】因?yàn)閺?fù)數(shù)的模為2,所以,所以其表示以為圓心,2為半徑的圓,如圖所示,表示過原點(diǎn)和圓上的點(diǎn)的直線的斜率,由圖可知,當(dāng)直線與圓相切時(shí),取得最值,設(shè)切線方程為,則,解得,所以的最大值為,故選:A5、B【解析】化簡(jiǎn)函數(shù)解析式,求解最小正周期,判斷選項(xiàng)A,利用整體法求解函數(shù)的對(duì)稱中心和單調(diào)遞增區(qū)間,判斷選項(xiàng)BC,再由圖象變換法則判斷選項(xiàng)D.【詳解】,所以函數(shù)的最小正周期為,A錯(cuò);令,得,所以函數(shù)圖象關(guān)于點(diǎn)對(duì)稱,B正確;由,得,所以函數(shù)在上為增函數(shù),在上為減函數(shù),C錯(cuò);函數(shù)的圖象向右平移個(gè)單位得,D錯(cuò).故選:B6、C【解析】過點(diǎn)在平面內(nèi)作,過點(diǎn)在平面內(nèi)作,以、為鄰邊作平行四邊形,連接,分析可知二面角的平面角為,利用余弦定理求出,證明出,再利用勾股定理可求得的長.【詳解】過點(diǎn)在平面內(nèi)作,過點(diǎn)在平面內(nèi)作,以、為鄰邊作平行四邊形,連接,因?yàn)椋?,,則,因?yàn)?,由等面積法可得,同理可得,由勾股定理可得,同理可得,,因?yàn)樗倪呅螢槠叫兴倪呅危?,故四邊形為矩形,所以,,因?yàn)?,所以,二面角的平面角為,在中,,,由余弦定理可得,,,,則,,因?yàn)?,平面,平面,則,,由勾股定理可得.故選:C.7、B【解析】先求出圓心到直線的距離為,由此可知當(dāng)圓的半徑為時(shí),圓上恰有三點(diǎn)到直線的距離為,當(dāng)圓的半徑時(shí),圓上恰有四個(gè)點(diǎn)到直線的距離為,故半徑的取值范圍是,即可求出答案.【詳解】由已知條件得的圓心坐標(biāo)為,圓心到直線為,∵圓上至少有三個(gè)點(diǎn)到直線的距離為1,∴圓的半徑的取值范圍是,即,即半徑的取值范圍是.故選:.8、B【解析】求出,根據(jù)點(diǎn)到直線的距離的向量公式進(jìn)行求解.【詳解】因?yàn)椋瑸榈囊粋€(gè)方向向量,所以點(diǎn)到直線的距離.故選:B9、D【解析】利用正弦定理邊化角,角化邊計(jì)算即可.【詳解】由正弦定理邊化角得,,再由正弦定理角化邊得,即故選:D.10、D【解析】計(jì)算出每月應(yīng)還的本金數(shù),再計(jì)算第n個(gè)月已還多少本金,由此可計(jì)算出個(gè)月的還款金額.【詳解】由題意可知:每月還本金為2000元,設(shè)張華第個(gè)月的還款金額為元,則,故選:D11、B【解析】利用特稱命題的否定是全稱命題,寫出結(jié)果即可【詳解】命題“?x0∈(0,+∞),”的否定是“?x∈(0,+∞),2x+sinx≥0”故選:B12、D【解析】根據(jù)兩直線平行可得出關(guān)于實(shí)數(shù)的等式,由此可解得實(shí)數(shù)的值.【詳解】由于直線與直線平行,則,解得.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】根據(jù)拋物線的定義可知,點(diǎn)P到拋物線準(zhǔn)線的距離等于點(diǎn)P到焦點(diǎn)F的距離,過焦點(diǎn)F作直線:的垂線,此時(shí)取得最小值,利用點(diǎn)到直線的距離公式,即可求解.【詳解】由題意,拋物線的焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,如圖所示,根據(jù)拋物線的定義可知,點(diǎn)P到拋物線準(zhǔn)線的距離等于點(diǎn)P到焦點(diǎn)F的距離,過焦點(diǎn)F作直線:的垂線,此時(shí)取得最小值,由點(diǎn)到直線的距離公式可得,即的最小值為3.【點(diǎn)睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程及其簡(jiǎn)單的幾何性質(zhì)的應(yīng)用,以及拋物線的最值問題,其中解答中根據(jù)拋物線的定義可知,點(diǎn)P到拋物線準(zhǔn)線的距離等于點(diǎn)P到焦點(diǎn)F的距離,利用點(diǎn)到直線的距離公式求解是解答的關(guān)鍵,著重考查了轉(zhuǎn)化思想,以及運(yùn)算與求解能力,屬于中檔試題.14、【解析】建立合適空間直角坐標(biāo)系,分別表示出點(diǎn)的坐標(biāo),然后求解出平面的一個(gè)法向量,利用公式求解出點(diǎn)到平面的距離.【詳解】以AB的中點(diǎn)O為坐標(biāo)原點(diǎn),分別以O(shè)E,OB所在的直線為x軸、y軸,過垂直于平面的方向?yàn)檩S,建立如下圖所示的空間直角坐標(biāo)系,則,,設(shè)平面ACE的法向量,則,即,令,∴故點(diǎn)D到平面ACE的距離.故答案:.15、【解析】根據(jù)題意,作出可行域,進(jìn)而根據(jù)幾何意義求解即可.【詳解】解:作出可行域如圖,將變形為,所以根據(jù)幾何意義,當(dāng)直線過點(diǎn)時(shí),有最小值,所以聯(lián)立方程得,所以的最小值為故答案為:16、【解析】結(jié)合圖形可以發(fā)現(xiàn),利用三角形中位線定理,將線段長度用坐標(biāo)表示成圓的方程,與橢圓方程聯(lián)立可進(jìn)一步求解.利用焦半徑及三角形中位線定理,則更為簡(jiǎn)潔.【詳解】方法1:由題意可知,由中位線定理可得,設(shè)可得,聯(lián)立方程可解得(舍),點(diǎn)在橢圓上且在軸的上方,求得,所以方法2:焦半徑公式應(yīng)用解析1:由題意可知,由中位線定理可得,即求得,所以.【點(diǎn)睛】本題主要考查橢圓的標(biāo)準(zhǔn)方程、橢圓的幾何性質(zhì)、直線與圓的位置關(guān)系,利用數(shù)形結(jié)合思想,是解答解析幾何問題的重要途徑.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)依題意設(shè)所求的雙曲線方程為,則,再根據(jù)離心率求出,即可求出,從而得到雙曲線方程;(2)依題意可得直線的斜率存在,設(shè),即可得到的坐標(biāo),依題意可得或,分兩種情況分別求出的坐標(biāo),再根據(jù)的雙曲線上,代入曲線方程,即可求出,即可得解;【小問1詳解】解:設(shè)所求的雙曲線方程為(,),則,,∴,又則,∴所求的雙曲線方程為【小問2詳解】解:∵直線l與y軸相交于M且過焦點(diǎn),∴l(xiāng)的斜率一定存在,則設(shè).令得,∵且M、Q、F共線于l,∴或當(dāng)時(shí),,,∴,∵Q在雙曲線上,∴,∴,當(dāng)時(shí),,代入雙曲線可得:,∴綜上所求直線l的方程為:或18、(1)(2)(i)存在常數(shù),使得成立;(ii)的最大值為.【解析】(1)求點(diǎn)P的坐標(biāo),再利用面積和離心率,可以求出,然后就可以得到橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)的坐標(biāo)和直線方程,聯(lián)立方程,解出的y坐標(biāo)值與P的坐標(biāo)之間的關(guān)系,求以焦距為底邊的三角形面積;利用均值定理當(dāng)且僅當(dāng)時(shí)取等號(hào),求最大值.【小問1詳解】先求第一象限P點(diǎn)坐標(biāo):,所以P點(diǎn)的坐標(biāo)為,所以,所以橢圓E的方程為【小問2詳解】設(shè),易知直線和直線的坐標(biāo)均不為零,因?yàn)椋栽O(shè)直線的方程為,直線的方程為,由所以,因?yàn)椋?,所以所以同理由所以,因?yàn)?,,所以所以,因?yàn)?,?i)所以所以存在常數(shù),使得成立.(ii),當(dāng)且僅當(dāng),時(shí)取等號(hào),所以的最大值為.19、(1)(2)(3)【解析】(1)根據(jù)表中數(shù)據(jù)判斷y關(guān)于x的回歸方程為非線性方程;(2)令,將y關(guān)于x的非線性關(guān)系,轉(zhuǎn)化為z關(guān)于x的線性關(guān)系,利用最小二乘法求解;(3)利用相互獨(dú)立事件的概率相乘求求解;【小問1詳解】根據(jù)表中數(shù)據(jù)適宜預(yù)測(cè)未來幾年我國區(qū)塊鏈企業(yè)總數(shù)量.【小問2詳解】,,令,則,,由公式計(jì)算可知,即,即所以y關(guān)于x的回歸方程為【小問3詳解】設(shè)甲公司獲得“優(yōu)勝公司”為事件.則所以甲公司獲得“優(yōu)勝公司”的概率為.20、(1)(2)【解析】(1)由正弦定理將邊化為角,結(jié)合三角函數(shù)的兩角和的正弦公式,可求得答案;(2)由余弦定理結(jié)合基本不等式可求得,再利用三角形面積公式求得答案.【小問1詳解】由正弦定理及,得,∵∴,∵,∴【小問2詳解】由余弦定理,∴,即,當(dāng)且僅當(dāng)時(shí)取等號(hào),∴,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,∴的面積的最大值為21、(1)證明見解析(2)存在,點(diǎn)P為棱SD靠近點(diǎn)D的三等分點(diǎn)【解析】(1)由的面積為1,得到,,由,點(diǎn)P為SD的中點(diǎn),所以,同理可得,根據(jù)線面垂直的判斷定理可得平面PAC,再由面面垂直的判斷定理可得答案;(2)存在,分別以O(shè)B,OC,OS所在直線為x,y,z軸,建立空間直角坐標(biāo)系,假設(shè)在棱SD上存在點(diǎn)P,設(shè),求出平面PAC、平面ACD的一個(gè)法向量,由二面角的向量法可得答案.【小問1詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 新生兒科三基理論考試試題及答案
- 臨床醫(yī)學(xué)概論模擬習(xí)題(附參考答案)
- 道路交通安全教育試題(附答案)
- 福建省漳州市教師職稱考試(理論知識(shí))在線模擬題庫及答案
- 銀行信貸考試題庫及答案
- 水利水電工程師考2025測(cè)試真題及答案
- 商法一期末考試題及答案
- 車險(xiǎn)理賠考試1000題(含答案)第四季
- 食品營養(yǎng)學(xué)題庫及答案
- 急危重癥護(hù)理學(xué)練習(xí)題(答案)
- 柴油維修技術(shù)培訓(xùn)課件
- DL∕T 5210.6-2019 電力建設(shè)施工質(zhì)量驗(yàn)收規(guī)程 第6部分:調(diào)整試驗(yàn)
- 2024年度初會(huì)《初級(jí)會(huì)計(jì)實(shí)務(wù)》高頻真題匯編(含答案)
- 績效考核和薪酬方案通用模板
- YY/T 0590.1-2018醫(yī)用電氣設(shè)備數(shù)字X射線成像裝置特性第1-1部分:量子探測(cè)效率的測(cè)定普通攝影用探測(cè)器
- GB/T 16927.1-2011高電壓試驗(yàn)技術(shù)第1部分:一般定義及試驗(yàn)要求
- 政府會(huì)計(jì)準(zhǔn)則優(yōu)秀課件
- 陣發(fā)性室性心動(dòng)過速課件
- 無機(jī)與分析化學(xué)理論教案
- 名詞性從句 講義-英語高考一輪復(fù)習(xí)語法部分
- T∕ZZB 2722-2022 鏈板式自動(dòng)排屑裝置
評(píng)論
0/150
提交評(píng)論