下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、第第 3 3 講:函數(shù)與導(dǎo)數(shù)的綜合應(yīng)用講:函數(shù)與導(dǎo)數(shù)的綜合應(yīng)用 【知識歸納】【知識歸納】 1.導(dǎo)數(shù)的定義:f(x)在點(diǎn) x0處的導(dǎo)數(shù)記作 y xx0 f (x 0 ) lim x0 f (x 0 x) f (x 0 ) ; x 2.導(dǎo)數(shù)的幾何意義:曲線yf(x)在點(diǎn) P(x0,f(x0))處的切線的斜率是f (x0).相應(yīng) 地,切線方程是y y0 f (x0)(x x0); 3.導(dǎo)數(shù)的四則運(yùn)算法則:(u v) u v;(uv) uv uv;( ) 4.常見函數(shù)的導(dǎo)數(shù)公 式:C 0(C為常數(shù));(xm) mxm-1(m Q);(sinx) cosx; u v uv uv ; 2v (cosx)
2、-sinx;(ex) ex;(ax) axlna;(lnx) 5.導(dǎo)數(shù)的應(yīng)用: 11 x;(log a ) loge a ; xx (1) 利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性: 設(shè)函數(shù) yf (x) 在某個(gè)區(qū)間內(nèi)可導(dǎo), 如果f (x) 0, 那么 f(x)為增函數(shù);如果f (x) 0,那么 f(x)為減函數(shù);如果在某個(gè)區(qū)間內(nèi)恒有 f (x) 0,那么 f(x)為常數(shù); (2)求可導(dǎo)函數(shù)f (x)的極值: 確定函數(shù)的定義區(qū)間,求導(dǎo)數(shù)f (x)求方程f (x) 0的根 用函數(shù)的導(dǎo)數(shù)為0的點(diǎn),順次將函數(shù)的定義區(qū)間分成若干小開區(qū)間,并列成表格 .檢查 f (x)在方程根左右的值的符號,如果左正右負(fù),那么f (x
3、)在這個(gè)根處取得極大值;如果 左負(fù)右正,那么f (x)在這個(gè)根處取得極小值;如果左右不改變符號,那么f (x)在這個(gè)根 處無極值.如果函數(shù)在某些點(diǎn)處連續(xù)但不可導(dǎo),也需要考慮這些點(diǎn)是否是極值點(diǎn) . (3)利用導(dǎo)數(shù)求函數(shù)的最值: 設(shè)函數(shù)f (x)在a,b上連續(xù),在(a,b)內(nèi)可導(dǎo),則求f (x)在a,b上的最大值與最小 值的步驟如下:求f (x)在(a,b)內(nèi)的極值; 將f (x)的各極值與f (a)、f (b)比較得出函數(shù)f (x)在a,b上的最值 (4)利用導(dǎo)數(shù)進(jìn)行綜合應(yīng)用:以導(dǎo)函數(shù)和不等式為基礎(chǔ),單調(diào)性為主線,最(極值)為助手, 從數(shù)形結(jié)合、分類討論等多視角進(jìn)行綜合探索. 通過研究函數(shù)的單調(diào)
4、性、 最值與不等式、數(shù) 列等基本知識的綜合應(yīng)用,提高分析問題和解決問題的能力以及數(shù)學(xué)歸納法的應(yīng)用。 【基礎(chǔ)練習(xí)】【基礎(chǔ)練習(xí)】 1 1.1.若曲線y x在點(diǎn)a,a2處的切線與兩個(gè)坐標(biāo)圍成的三角形的面積為18, 則a () 1 2 (A)64(B)32(C)16(D)8 2.2. 若點(diǎn)在曲線y x x 2上移動,經(jīng)過點(diǎn)的切線的傾斜角為,則的取值范圍 是() 3 , , 0, , 0, o, 2 2 44 2 2 4 3.3.函數(shù)y f (x)在定義域( 3 3 3 3 ,3)內(nèi)可導(dǎo),其圖象如圖所示,記y f (x)的導(dǎo)函數(shù)為 2 y f (x),則不等式f (x) 0的解集為( ) 1 A.,12
5、,3 3 14 8 B.1, , 23 3 3 1 C., 1,2 2 2 31 4 8 D. ,1 , ,3 2 2 3 3 4對于R上可導(dǎo)的任意函數(shù)f (x),若滿足x1f(x)0,則必有() A.f (0) f (2) 2f 1 B.f (0) f (2)2f 1 C.f (0) f (2)2f 1 D.f (0) f (2) 2f 1 【典型例題】典型例題】 例例 1 1 (1 1)求)求曲線y 4x x在點(diǎn)1,3處的切線方程。 3 (2 2)過點(diǎn)(1,0)作拋物線y x x1的切線,求切線方程。 2 例例 2 2求函數(shù)f (x) x 3x 2在區(qū)間1,1上的最大值。 32 例例 3
6、3設(shè)函數(shù)f (x) x 3ax 3bx的圖像與直線12x y 1 0相切于點(diǎn)(1,11)。 ()求a,b的值; ()討論函數(shù)f (x)的單調(diào)性。 例例 4 4已知函數(shù)f (x) ax ln xbx c(x 0)在x 1處取得極值3c,其中a,b為 常數(shù) ()試確定a,b的值; ()討論函數(shù)f (x)的單調(diào)區(qū)間; ()若對任意x 0, 不等式f (x)2c恒成立,求c的取值范圍 2 44 32 【課后鞏固】【課后鞏固】 1.求滿足條件的實(shí)數(shù)a的范圍: 1使 y sin xax為R上增函數(shù),則a的范圍是a1, ) 2使 y x3 ax a為R上增函數(shù),則a的范圍是a0 , ) 2f (x)的導(dǎo)函數(shù)y f (x)的圖象如圖所示,則y f (x)的圖象最有可能的是 ( C) 3.函數(shù)f (x)的定義域?yàn)殚_區(qū)間(a,b),導(dǎo)函數(shù)f (x)在 y y f ? (x) (a,b)內(nèi)的圖象如圖所示,則函數(shù)f (x)在開區(qū)間(a,b)內(nèi)有 極小值點(diǎn)() A1 個(gè)B2 個(gè)C3 個(gè)D 4 個(gè) 4已知函數(shù) fx x 3ax1,gx fxax5, 3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中學(xué)學(xué)生社團(tuán)活動成果展示制度
- 2025年中職數(shù)據(jù)處理(數(shù)據(jù)統(tǒng)計(jì)分析)試題及答案
- 高一地理(查漏補(bǔ)缺)2025-2026年上學(xué)期期中測試卷
- 2025年大學(xué)本科(會計(jì)學(xué))稅務(wù)籌劃應(yīng)用階段測試題及答案
- 2025年中職化學(xué)(無機(jī)化學(xué)基礎(chǔ))試題及答案
- 2025年高職空中乘務(wù)(客艙服務(wù)規(guī)范)試題及答案
- 2025年大學(xué)第二學(xué)年(口腔醫(yī)學(xué))口腔內(nèi)科學(xué)基礎(chǔ)階段測試試題及答案
- 2025年高職醫(yī)療器械維護(hù)與管理(設(shè)備檢修)試題及答案
- 2025年大學(xué)(經(jīng)濟(jì)學(xué))國際貿(mào)易學(xué)期末測試題及答案
- 2025年大學(xué)二年級(地質(zhì)工程)地質(zhì)災(zāi)害防治綜合測試題及答案
- DB35T 2136-2023 茶樹病害測報(bào)與綠色防控技術(shù)規(guī)程
- 蓋板涵蓋板計(jì)算
- 運(yùn)輸工具服務(wù)企業(yè)備案表
- 醫(yī)院藥房醫(yī)療廢物處置方案
- 天塔之光模擬控制PLC課程設(shè)計(jì)
- 金屬眼鏡架拋光等工藝【省一等獎(jiǎng)】
- 《藥品經(jīng)營質(zhì)量管理規(guī)范》的五個(gè)附錄
- ASMEBPE介紹專題知識
- 八年級上冊地理期末復(fù)習(xí)計(jì)劃通用5篇
- 初中日語人教版七年級第一冊單詞表講義
- GB/T 9065.5-2010液壓軟管接頭第5部分:37°擴(kuò)口端軟管接頭
評論
0/150
提交評論