版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
實(shí)用標(biāo)準(zhǔn)文檔④截距由直線在軸和軸上的截距確定的直線的截距式方程,簡(jiǎn)稱(chēng)截距式:牢記口訣兩點(diǎn)斜截距--兩點(diǎn)點(diǎn)斜斜截截距5、設(shè)兩條直線分別為,::若,則有且。若點(diǎn)P(x0,y0)到直線y=kx+b(即:kx-y+b=0)的距離:拋物線中,abc,的作用(1)決定開(kāi)口方向及開(kāi)口大小,這與中的完全一樣.(2)和共同決定拋物線對(duì)稱(chēng)軸的位置.由于拋物線的對(duì)稱(chēng)軸是直線,故:①時(shí),對(duì)稱(chēng)軸為軸;②(即、同號(hào))時(shí),對(duì)稱(chēng)軸在軸左側(cè);③(即、異號(hào))時(shí),對(duì)稱(chēng)軸在軸右側(cè).口訣同左異右(3)的大小決定拋物線與軸交點(diǎn)的位置.當(dāng)時(shí),,∴拋物線與軸有且只有一個(gè)交點(diǎn)(0,):①,拋物線經(jīng)過(guò)原點(diǎn);②,與軸交于正半軸;③,與軸交于負(fù)半軸.以上三點(diǎn)中,當(dāng)結(jié)論和條件互換時(shí),仍成立.如拋物線的對(duì)稱(chēng)軸在軸右側(cè),則.十二,初中數(shù)學(xué)助記口訣(函數(shù)部分)特殊點(diǎn)坐標(biāo)特征:坐標(biāo)平面點(diǎn)(x,y),橫在前來(lái)縱在后;(+,+),(-,+),(-,-)和(+,-),四個(gè)象限分前后;X軸上y為0,x為0在Y軸。對(duì)稱(chēng)點(diǎn)坐標(biāo):對(duì)稱(chēng)點(diǎn)坐標(biāo)要記牢,相反數(shù)位置莫混淆,X軸對(duì)稱(chēng)y相反,Y軸對(duì)稱(chēng),x前面添負(fù)號(hào);原點(diǎn)對(duì)稱(chēng)最好記,橫縱坐標(biāo)變符號(hào)。
自變量的取值范圍:分式分母不為零,偶次根下負(fù)不行;零次冪底數(shù)不為零,整式、奇次根全能行。
函數(shù)圖像的移動(dòng)規(guī)律:若把一次函數(shù)解析式寫(xiě)成y=k(x+0)+b、二次函數(shù)的解析式寫(xiě)成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號(hào),上下平移在末稍,同左上加異右下減一次函數(shù)圖像與性質(zhì)口訣:一次函數(shù)是直線,圖像經(jīng)過(guò)仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;k為負(fù)來(lái)左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)。
二次函數(shù)圖像與性質(zhì)口訣:二次函數(shù)拋物線,圖象對(duì)稱(chēng)是關(guān)鍵;開(kāi)口、頂點(diǎn)和交點(diǎn),它們確定圖象現(xiàn);開(kāi)口、大小由a斷,c與Y軸來(lái)相見(jiàn),b的符號(hào)較特別,符號(hào)與a相關(guān)聯(lián);頂點(diǎn)位置先找見(jiàn),Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點(diǎn)坐標(biāo)最重要,一般式配方它就現(xiàn),橫標(biāo)即為對(duì)稱(chēng)軸,縱標(biāo)函數(shù)最值見(jiàn)。若求對(duì)稱(chēng)軸位置,符號(hào)反,一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換。
反比例函數(shù)圖像與性質(zhì)口訣:反比例函數(shù)有特點(diǎn),雙曲線相背離的遠(yuǎn);k為正,圖在一、三(象)限,k為負(fù),圖在二、四(象)限;圖在一、三函數(shù)減,兩個(gè)分支分別減。圖在二、四正相反,兩個(gè)分支分別添;線越長(zhǎng)越近軸,永遠(yuǎn)與軸不沾邊。正比例函數(shù)是直線,圖象一定過(guò)圓點(diǎn),k的正負(fù)是關(guān)鍵,決定直線的象限,負(fù)k經(jīng)過(guò)二四限,x增大y在減,上下平移k不變,由引得到一次線,向上加b向下減,圖象經(jīng)過(guò)三個(gè)限,兩點(diǎn)決定一條線,選定系數(shù)是關(guān)鍵。
反比例函數(shù)雙曲線,待定只需一個(gè)點(diǎn),正k落在一三限,x增大y在減,圖象上面任意點(diǎn),矩形面積都不變,對(duì)稱(chēng)軸是角分線x、y的順序可交換。
二次函數(shù)拋物線,選定需要三個(gè)點(diǎn),a的正負(fù)開(kāi)口判,c的大小y軸看,△的符號(hào)最簡(jiǎn)便,x軸上數(shù)交點(diǎn),a、b同號(hào)軸左邊拋物線平移a不變,頂點(diǎn)牽著圖象轉(zhuǎn),三種形式可變換,配方法作用最關(guān)鍵。對(duì)稱(chēng)點(diǎn)坐標(biāo):對(duì)稱(chēng)點(diǎn)坐標(biāo)要記牢,相反數(shù)位置莫混淆,X軸對(duì)稱(chēng)y相反,Y軸對(duì)稱(chēng),x前面添負(fù)號(hào);原點(diǎn)對(duì)稱(chēng)最好記,橫縱坐標(biāo)變符號(hào)。關(guān)于軸對(duì)稱(chēng)關(guān)于軸對(duì)稱(chēng)后,得到的解析式是;關(guān)于軸對(duì)稱(chēng)后,得到的解析式是;關(guān)于軸對(duì)稱(chēng)關(guān)于軸對(duì)稱(chēng)后,得到的解析式是;關(guān)于軸對(duì)稱(chēng)后,得到的解析式是;關(guān)于原點(diǎn)對(duì)稱(chēng)關(guān)于原點(diǎn)對(duì)稱(chēng)后,得到的解析式是;關(guān)于原點(diǎn)對(duì)稱(chēng)后,得到的解析式是關(guān)于頂點(diǎn)對(duì)稱(chēng)關(guān)于頂點(diǎn)對(duì)稱(chēng)后,得到的解析式是;關(guān)于頂點(diǎn)對(duì)稱(chēng)后,得到的解析式是.關(guān)于點(diǎn)對(duì)稱(chēng)關(guān)于點(diǎn)對(duì)稱(chēng)后,得到的解析式是根據(jù)對(duì)稱(chēng)的性質(zhì),顯然無(wú)論作何種對(duì)稱(chēng)變換,拋物線的形狀一定不會(huì)發(fā)生變化,因此永遠(yuǎn)不變.求拋物線的對(duì)稱(chēng)拋物線的表達(dá)式時(shí),可以依據(jù)題意或方便運(yùn)算的原則,選擇合適的形式,習(xí)慣上是先確定原拋物線(或表達(dá)式已知的拋物線)的頂點(diǎn)坐標(biāo)及開(kāi)口方向,再確定其對(duì)稱(chēng)拋物線的頂點(diǎn)坐標(biāo)及開(kāi)口方向,然后再寫(xiě)出其對(duì)稱(chēng)拋物線的表達(dá)式.口訣Y反對(duì)X,X反對(duì)Y,都反對(duì)原點(diǎn)2自變量的取值范圍:分式分母不為零,偶次根下負(fù)不行;零次冪底數(shù)不為零,函數(shù)圖像的移動(dòng)規(guī)律:若把一次函數(shù)解析式寫(xiě)成y=k(x+0)+b,二次函數(shù)的解析式寫(xiě)成y=a(x+h)2+k的形式,則用下面后的口訣:“左右平移在括號(hào),上下平移在末稍,左正右負(fù)須牢記,上正下負(fù)錯(cuò)不了”。一次函數(shù)圖像與性質(zhì)口訣:一次函數(shù)是直線,圖像經(jīng)過(guò)仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;k為負(fù)來(lái)左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)。二次函數(shù)圖像與性質(zhì)口訣:二次函數(shù)拋物線,圖象對(duì)稱(chēng)是關(guān)鍵;開(kāi)口、頂點(diǎn)和交點(diǎn),它們確定圖象限;開(kāi)口、大小由a斷,c與Y軸來(lái)相見(jiàn),b的符號(hào)較特別,符號(hào)與a相關(guān)聯(lián);頂點(diǎn)位置先找見(jiàn),Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點(diǎn)坐標(biāo)最重要,一般式配方它就現(xiàn),橫標(biāo)即為對(duì)稱(chēng)軸,縱標(biāo)函數(shù)最值見(jiàn)。若求對(duì)稱(chēng)軸位置,符號(hào)反,一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換。反比例函數(shù)圖像與性質(zhì)口訣:反比例函數(shù)有特點(diǎn),雙曲線相背離的遠(yuǎn);k為正,圖在一、三(象)限;k為負(fù),圖在二、四(象)限;圖在一、三函數(shù)減,兩個(gè)分支分別減;圖在二、四正相反,兩個(gè)分支分別添;線越長(zhǎng)越近軸,永遠(yuǎn)與軸不沾邊。函數(shù)學(xué)習(xí)口決:正比例函數(shù)是直線,圖象一定過(guò)原點(diǎn),k的正負(fù)是關(guān)鍵,決定直線的象限,負(fù)k經(jīng)過(guò)二四限,x增大y在減,上下平移k不變,由引得到一次線,向上加b向下減,圖象經(jīng)過(guò)三個(gè)限,兩點(diǎn)決定一條線,選定系數(shù)是關(guān)鍵;反比例函數(shù)雙曲線,待定只需一個(gè)點(diǎn),正k落在一三限,x增大y在減,圖象上面任意點(diǎn),矩形面積都不變,對(duì)稱(chēng)軸是角分線x、y的順序可交換;二次函數(shù)拋物線,選定需要三個(gè)點(diǎn),a的正負(fù)開(kāi)口判,c的大小y軸看,△的符號(hào)最簡(jiǎn)便,x軸上數(shù)交點(diǎn),a、b同號(hào)軸左邊拋物線平移a不變,頂點(diǎn)牽著圖象轉(zhuǎn),三種形式可變換,配方法作用最關(guān)鍵。求定義域:求定義域有講究,四項(xiàng)原則須留意。
負(fù)數(shù)不能開(kāi)平方,分母為零無(wú)意義。
指是分?jǐn)?shù)底正數(shù),數(shù)零沒(méi)有零次冪。
限制條件不唯一,滿足多個(gè)不等式。
求定義域要過(guò)關(guān),四項(xiàng)原則須注意。
負(fù)數(shù)不能開(kāi)平方,分母為零無(wú)意義。
分?jǐn)?shù)指數(shù)底正數(shù),數(shù)零沒(méi)有零次冪。
限制條件不唯一,不等式組求解集。解一元一次不等式:先去分母再括號(hào),移項(xiàng)合并同類(lèi)項(xiàng)。
系數(shù)化“1”有講究,同乘除負(fù)要變向。
先去分母再括號(hào),移項(xiàng)別忘要變號(hào)。
同類(lèi)各項(xiàng)去合并,系數(shù)化“1”注意了。
同乘除正無(wú)防礙,同乘除負(fù)也變號(hào)。解一元二次不等式:首先化成一般式,構(gòu)造函數(shù)第二站。
判別式值若非負(fù),曲線橫軸有交點(diǎn)。
a正開(kāi)口它向上,大于零則取兩邊。
代數(shù)式若小于零,解集交點(diǎn)數(shù)之間。
方程若無(wú)實(shí)數(shù)根,口上大零解為全。
小于零將沒(méi)有解,開(kāi)口向下正相反。
13.1用公式法解一元二次方程
要用公式解方程,首先化成一般式。
調(diào)整系數(shù)隨其后,使其成為最簡(jiǎn)比。
確定參數(shù)abc,計(jì)算方程判別式。
判別式值與零比,有無(wú)實(shí)根便得知。
有實(shí)根可套公式,沒(méi)有實(shí)根要告之。用常規(guī)配方法解一元二次方程:左未右已先分離,二系化“1”是其次。
一系折半再平方,兩邊同加沒(méi)問(wèn)題。
左邊分解右合并,直接開(kāi)方去解題。
該種解法叫配方,解方程時(shí)多練習(xí)。用間接配方法解一元二次方程:已知未知先分離,因式分解是其次。
調(diào)整系數(shù)等互反,和差積套恒等式。
完全平方等常數(shù),間接配方顯優(yōu)勢(shì)
【注】恒等式解一元二次方程:方程沒(méi)有一次項(xiàng),直接開(kāi)方最理想。
如果缺少常數(shù)項(xiàng),因式分解沒(méi)商量。
b、c相等都為零,等根是零不要忘。
b、c同時(shí)不為零,因式分解或配方,
也可直接套公式,因題而異擇良方。正比例函數(shù)的鑒別:判斷正比例函數(shù),檢驗(yàn)當(dāng)分兩步走。
一量表示另一量,有沒(méi)有。
若有再去看取值,全體實(shí)數(shù)都需要。
區(qū)分正比例函數(shù),衡量可分兩步走。
一量表示另一量,是與否。
若有還要看取值,全體實(shí)數(shù)都要有。正比例函數(shù)的圖象與性質(zhì):正比函數(shù)圖直線,經(jīng)過(guò)和原點(diǎn)。
K正一三負(fù)二四,變化趨勢(shì)記心間。
K正左低右邊高,同大同小向爬山。
K負(fù)左高右邊低,一大另小下山巒。一次函數(shù):一次函數(shù)圖直線,經(jīng)過(guò)點(diǎn)。
K正左低右邊高,越走越高向爬山。
K負(fù)左高右邊低,越來(lái)越低很明顯。
K稱(chēng)斜率b截距,截距為零變正函。反比例函數(shù):反比函數(shù)雙曲線,經(jīng)過(guò)點(diǎn)。
K正一三負(fù)二四,兩軸是它漸近線。
K正左高右邊低,一三象限滑下山。
K負(fù)左低右邊高,二四象限如爬山。二次函數(shù):二次方程零換y,二次函數(shù)便出現(xiàn)。
全體實(shí)數(shù)定義域,圖像叫做拋物線。
拋物線有對(duì)稱(chēng)軸,兩邊單調(diào)正相反。
A定開(kāi)口及大小,線軸交點(diǎn)叫頂點(diǎn)。
頂點(diǎn)非高即最低。上低下高很顯眼。
如果要畫(huà)拋物線,平移也可去描點(diǎn),
提取配方定頂點(diǎn),兩條途徑再挑選。
列表描點(diǎn)后連線,平移規(guī)律記心間。
左加右減括號(hào)內(nèi),號(hào)外上加下要減。
二次方程零換y,就得到二次函數(shù)。
圖像叫做拋物線,定義域全體實(shí)數(shù)。
A定開(kāi)口及大小,開(kāi)口向上是正數(shù)。
絕對(duì)值大開(kāi)口小,開(kāi)口向下A負(fù)數(shù)。
拋物線有對(duì)稱(chēng)軸,增減特性可看圖。
線軸交點(diǎn)叫頂點(diǎn),頂點(diǎn)縱標(biāo)最值出。
如果要畫(huà)拋物線,描點(diǎn)平移兩條路。
提取配方定頂點(diǎn),平移描點(diǎn)皆成圖。
列表描點(diǎn)后連線,三點(diǎn)大致定全圖。
若要平移也不難,先畫(huà)基礎(chǔ)拋物線,
頂點(diǎn)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老院信息化建設(shè)及管理規(guī)范制度
- 企業(yè)員工績(jī)效反饋制度
- 會(huì)議提案征集與篩選制度
- 2026年護(hù)理專(zhuān)業(yè)知識(shí)與技能模擬題庫(kù)
- 2026年醫(yī)療行業(yè)專(zhuān)業(yè)筆試試題及答案解析
- 2026年英語(yǔ)四六級(jí)閱讀理解技巧模擬試題及答案
- 2026年環(huán)境評(píng)估師專(zhuān)業(yè)試題集與解析
- 2026年新版細(xì)胞鋪展協(xié)議
- 2026年新版記憶力協(xié)議
- 《CJ 26.24-1991城市污水水質(zhì)檢驗(yàn)方法標(biāo)準(zhǔn) 氯化物測(cè)定 銀量法》專(zhuān)題研究報(bào)告
- 農(nóng)忙及春節(jié)期間施工進(jìn)度計(jì)劃保證措施
- 新增專(zhuān)業(yè)可行性論證報(bào)告
- 浙江省溫州市小升初英語(yǔ)真題2(含答案)
- 2025屆山東濰坊臨朐九年級(jí)化學(xué)第一學(xué)期期末綜合測(cè)試試題含解析
- 產(chǎn)品保修證明模板
- FZT 82006-2018 機(jī)織配飾品行業(yè)標(biāo)準(zhǔn)
- 人教版小學(xué)1-4年級(jí)英文詞匯表
- 交警環(huán)衛(wèi)安全知識(shí)講座
- 中國(guó)通史課件
- SJ-T 11795-2022 鋰離子電池電極材料中磁性異物含量測(cè)試方法
- 非暴力溝通(完整版)
評(píng)論
0/150
提交評(píng)論