版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
一、解答題1.如圖1,以直角的直角頂點為原點,以,所在直線為軸和軸建立平面直角坐標系,點,,并且滿足.(1)直接寫出點,點的坐標;(2)如圖1,坐標軸上有兩動點,同時出發(fā),點從點出發(fā)沿軸負方向以每秒2個單位長度的速度勻速運動,點從點出發(fā)沿軸正方向以每秒個單位長度的速度勻速運動,當點到達點整個運動隨之結束;線段的中點的坐標是,設運動時間為秒.是否存在,使得與的面積相等?若存在,求出的值;若不存在,說明理由;(3)如圖2,在(2)的條件下,若,點是第二象限中一點,并且平分,點是線段上一動點,連接交于點,當點在上運動的過程中,探究,,之間的數(shù)量關系,直接寫出結論.解析:(1)(0,6),(8,0);(2)存在t=2.4時,使得△ODP與△ODQ的面積相等;(3)∠DOG+∠ACE=∠OHC【分析】(1)利用非負性即可求出a,b即可得出結論;(2)先表示出OQ,OP,利用面積相等,建立方程求解即可得出結論;(3)先判斷出∠OAC=∠AOD,進而判斷出OG∥AC,即可判斷出∠FHC=∠ACE,同理∠FHO=∠DOG,即可得出結論.【詳解】解:(1)∵,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0),故答案為(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由運動知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴S△ODQ=OQ×|xD|=t×4=2t,S△ODP=OP×|yD|=(8-2t)×3=12-3t,∵△ODP與△ODQ的面積相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4時,使得△ODP與△ODQ的面積相等;(3)∴∠GOD+∠ACE=∠OHC,理由如下:∵x軸⊥y軸,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°,又∵∠DOC=∠DCO,∴∠OAC=∠AOD,∵y軸平分∠GOD,∴∠GOA=∠AOD,∴∠GOA=∠OAC,∴OG∥AC,如圖,過點H作HF∥OG交x軸于F,∴HF∥AC,∴∠FHC=∠ACE,同理∠FHO=∠GOD,∵OG∥FH,∴∠DOG=∠FHO,∴∠DOG+∠ACE=∠FHO+∠FHC,即∠DOG+∠ACE=∠OHC.【點睛】此題是三角形綜合題,主要考查了非負性的性質(zhì),三角形的面積公式,角平分線的定義,平行線的性質(zhì),正確作出輔助線是解本題的關鍵.2.如圖1,已知,點A(1,a),AH⊥x軸,垂足為H,將線段AO平移至線段BC,點B(b,0),其中點A與點B對應,點O與點C對應,a、b滿足.(1)填空:①直接寫出A、B、C三點的坐標A(________)、B(________)、C(________);②直接寫出三角形AOH的面積________.(2)如圖1,若點D(m,n)在線段OA上,證明:4m=n.(3)如圖2,連OC,動點P從點B開始在x軸上以每秒2個單位的速度向左運動,同時點Q從點O開始在y軸上以每秒1個單位的速度向下運動.若經(jīng)過t秒,三角形AOP與三角形COQ的面積相等,試求t的值及點P的坐標.解析:(1)①1,4;3,0;2,﹣4;②2;(2)見解析;(3)t=1.2時,P(0.6,0),t=2時,P(﹣1,0).【分析】(1)①利用非負數(shù)的性質(zhì)求出a,b的值,可得結論.②利用三角形面積公式求解即可.(2)連接DH,根據(jù)△ODH的面積+△ADH的面積=△OAH的面積,構建關系式,可得結論.(3)分兩種情形:①當點P在線段OB上,②當點P在BO的延長線上時,分別利用面積關系,構建方程,可得結論.【詳解】(1)解:①∵,又∵≥0,(b﹣3)2≥0,∴a=4,b=3,∴A(1,4),B(3,0),∵B是由A平移得到的,∴A向右平移2個單位,向下平移4個單位得到B,∴點C是由點O向右平移2個單位,向下平移4個單位得到的,∴C(2,﹣4),故答案為:1,4;3,0;2,﹣4.②△AOH的面積=×1×4=2,故答案為:2.(2)證明:如圖,連接DH.∵△ODH的面積+△ADH的面積=△OAH的面積,∴×1×n+×4×(1﹣m)=2,∴4m=n.(3)解:①當點P在線段OB上,由三角形AOP與三角形COQ的面積相等得:OP·yA=OQ·xC,∴×(3﹣2t)×4=×2t,解得t=1.2.此時P(0.6,0).②當點P在BO的延長線上時,由三角形AOP與三角形COQ的面積相等得:OP·yA=OQ·xC,×(2t﹣3)×4=×2×t,解得t=2,此時P(﹣1,0),綜上所述,t=1.2時,P(0.6,0),t=2時,P(﹣1,0).【點睛】本題考查坐標與圖形變化-平移,非負數(shù)的性質(zhì),三角形的面積等知識,解題的關鍵是學會利用參數(shù)構建方程解決問題.3.如圖1,在直角坐標系中直線與、軸的交點分別為,,且滿足.(1)求、的值;(2)若點的坐標為且,求的值;(3)如圖2,點坐標是,若以2個單位/秒的速度向下平移,同時點以1個單位/秒的速度向左平移,平移時間是秒,若點落在內(nèi)部(不包含三角形的邊),求的取值范圍.解析:(1),;(2)或;(3)【分析】(1)根據(jù)非負數(shù)和為0,則每一個非負數(shù)都是0,即可求出a,b的值;(2)設直線AB與直線x=1交于點N,可得N(1,5),根據(jù)S△ABM=S△AMN?S△BMN,即可表示出S△ABM,從而列出m的方程.(3)根據(jù)題意知,臨界狀態(tài)是點P落在OA和AB上,分別求出此時t的值,即可得出范圍.【詳解】(1)∵,,∴,解得:,(2)設直線與直線交于,設∵a=?4,b=4,∴A(?4,0),B(0,4),設直線AB的函數(shù)解析式為:y=kx+b,代入得,解得∴直線AB的函數(shù)解析式為:y=x+4,代入x=1得∵∴=×5×|5?m|?×1×|5?m|=2|5?m|,∵∴∴或解得:或,(3)當點P在OA邊上時,則2t=2,∴t=1,當點P在AB邊上時,如圖,過點P作PKx軸,AK⊥x軸交于K,則KP'=3?t,KA'=2t?2,∴3?t=2t?2,∴綜上所述:.【點睛】本題主要考查了平移的性質(zhì)、一般三角形面積的和差表示、以及非負數(shù)的性質(zhì)等知識點,第(2)問中用絕對值來表示動點構成的線段長度是正確解題的關鍵.4.如圖1,點是第二象限內(nèi)一點,軸于,且是軸正半軸上一點,是x軸負半軸上一點,且.(1)(),()(2)如圖2,設為線段上一動點,當時,的角平分線與的角平分線的反向延長線交于點,求的度數(shù):(注:三角形三個內(nèi)角的和為)(3)如圖3,當點在線段上運動時,作交于的平分線交于,當點在運動的過程中,的大小是否變化?若不變,求出其值;若變化,請說明理由.解析:(1)A(-2,0)、B(0,3);(2)∠APD=90°;(3)∠N的大小不變,∠N=45°【分析】(1)利用非負數(shù)的和為零,各項分別為零,求出a,b的值;(2)如圖,作DM∥x軸,結合題意可設∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,根據(jù)平角的定義可知∠OAD=90°-2y,由平行線的性質(zhì)可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,進而可得出x=y,再結合圖形即可得出∠APD的度數(shù);(3)∠N的大小不變,∠N=45°,如圖,過D作DE∥BC,過N作NF∥BC,根據(jù)平行線的性質(zhì)可知∠BMD+∠OAD=∠ADM=90°,然后根據(jù)角平分線的定義和平行線的性質(zhì),可得∠ANM=∠BMD+∠OAD,據(jù)此即可得到結論.【詳解】(1)由,可得和,解得∴A的坐標是(-2,0)、B的坐標是(0,3);(2)如圖,作DM∥x軸根據(jù)題意,設∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,∴∠OAD=90°-2y,∵DM∥x軸,∴∠OAD+∠ADM=180°,∴90-2y+2x+90°=180°,∴x=y,∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90°(3)∠N的大小不變,∠N=45°理由:如圖,過D作DE∥BC,過N作NF∥BC.∵BC∥x軸,∴DE∥BC∥x軸,NF∥BC∥x軸,∴∠EDM=∠BMD,∠EDA=∠OAD,∵DM⊥AD,∴∠ADM=90°,∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°,∵MN平分∠BMD,AN平分∠DAO,∴∠BMN=∠BMD,∠OAN=∠OAD,∴∠ANM=∠BMN+∠OAN=∠BMD+∠OAD=×90°=45°.【點睛】本題考查了坐標與圖形性質(zhì):利用點的坐標計算出相應的線段的長和判斷線段與坐標軸的位置關系.也考查了三角形內(nèi)角和定理和三角形外角性質(zhì).5.如圖,平面直角坐標系中,點的坐標是,點在軸的正半軸上,的面積等于18.(1)求點的坐標;(2)如圖,點從點出發(fā),沿軸正方向運動,點運動至點停止,同時點從點出發(fā),沿軸正方向運動,點運動至點停止,點、點的速度都為每秒1個單位,設運動時間為秒,的面積為,求用含的式子表示,并直接寫出的取值范圍;(3)在(2)的條件下,過點作,連接并延長交于,連接交于點,若,求值及點的坐標.解析:(1);(2)();(3)的值為4,點的坐標是.【分析】(1)根據(jù)△AOB的面積可求得OA的長,即可求得點A的坐標;(2)由題意可分別得,由三角形面積公式即可得結果,由點Q只在線段OB上運動,從而可得t的取值范圍;(3)利用割補方法,由則可求得t的值;連接OE,由可求得OF的長,從而求得點F的坐標.【詳解】(1)∵B(-6,0),∴OB=6,∵,∴,∴OA=6,∴.(2)∵,,∴,∴()(3)∵,,∴,∴,解得,則,∴,連接,如圖∵,∴∴∴點坐標為綜上所述:的值為4,點的坐標是.【點睛】本題考查了代數(shù)式,三角形面積,用到了割補方法,也是本題的關鍵和難點.6.如圖,以直角三角形AOC的直角頂點O為原點,以OC、OA所在直線為x軸和y軸建立平面直角坐標系,點A(0,a),C(b,0)滿足+|b﹣2|=0,D為線段AC的中點.在平面直角坐標系中,以任意兩點P(x1,y1)、Q(x2,y2)為端點的線段中點坐標為(,).(1)則A點的坐標為;點C的坐標為,D點的坐標為.(2)已知坐標軸上有兩動點P、Q同時出發(fā),P點從C點出發(fā)沿x軸負方向以1個單位長度每秒的速度勻速移動,Q點從O點出發(fā)以2個單位長度每秒的速度沿y軸正方向移動,點Q到達A點整個運動隨之結束.設運動時間為t(t>0)秒.問:是否存在這樣的t,使S△ODP=S△ODQ,若存在,請求出t的值;若不存在,請說明理由.(3)點F是線段AC上一點,滿足∠FOC=∠FCO,點G是第二象限中一點,連OG,使得∠AOG=∠AOF.點E是線段OA上一動點,連CE交OF于點H,當點E在線段OA上運動的過程中,請確定∠OHC,∠ACE和∠OEC的數(shù)量關系,并說明理由.解析:(1),,;(2)存在,;(3)【分析】(1)根據(jù)絕對值和算術平方根的非負性,求得a,b的值,得出點A,C的坐標,再運用中點公式求出點D的坐標;(2)根據(jù)題意可得CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根據(jù)S△ODP=S△ODQ,列方程求解即可;(3)過點H作HP∥AC交x軸于點P,先證明OG∥AC,再根據(jù)角的和差關系以及平行線性質(zhì),得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入可得.【詳解】解:(1),,,,,,,設,為線段的中點.,,,故答案為:,,;(2)存在,.由條件可知:點從點運動到點需要時間為2秒,點從點運動到點需要時間2秒,,點在線段上,,,,,,,,,.(3)如圖2,,,,,,,,如圖,過點作交軸于點,則,,,,∴.【點睛】本題考查了平行線的性質(zhì),三角形面積,非負數(shù)的性質(zhì),中點坐標公式等,是一道三角形綜合題,解題關鍵是學會添加輔助線,運用轉(zhuǎn)化的思想思考問題.7.已知A(0,a)、B(b,0),且+(b﹣4)2=0.(1)直接寫出點A、B的坐標;(2)點C為x軸負半軸上一點滿足S△ABC=15.①如圖1,平移直線AB經(jīng)過點C,交y軸于點E,求點E的坐標;②如圖2,若點F(m,10)滿足S△ACF=10,求m.(3)如圖3,D為x軸上B點右側的點,把點A沿y軸負半軸方向平移,過點A作x軸的平行線l,在直線l上取兩點G、H(點H在點G右側),滿足HB=8,GD=6.當點A平移到某一位置時,四邊形BDHG的面積有最大值,直接寫出面積的最大值.解析:(1)A(0,5),B(4,0);(2)①E(0,﹣);②﹣2或6;(3)24.【分析】(1)根據(jù)二次根式和偶次冪的非負性得出a,b解答即可;(2)①根據(jù)三角形的面積公式得出點C的坐標,根據(jù)平行線的性質(zhì)解答即可;②延長CA交直線l于點H(a,10),過點H作HM⊥x軸于點M,根據(jù)三角形面積公式解答即可;(3)平移GH到DM,連接HM,根據(jù)三角形面積公式解答即可.【詳解】解:(1)∵,且,(b﹣4)2≥0,∴a﹣5=0,b﹣4=0,解得:a=5,b=4,∴A(0,5),B(4,0);(2)①連接BE,如圖1,∵,∴BC=6,∴C(﹣2,0),∵AB∥CE,∴S△ABC=S△ABE,∴,∴AE=,∴OE=,∴E(0,﹣);②∵F(m,10),∴點F在過點G(0,10)且平行于x軸的直線l上,延長CA交直線l于點H(a,10),過點H作HM⊥x軸于點M,則M(a,0),如圖2,∵S△HCM=S△ACO+S梯形AOMH,∴,解得:a=2,∴H(2,10),∵S△AFC=S△CFH﹣S△AFH,∴,∴FH=4,∵H(2,10),∴F(﹣2,10)或(6,10),∴m=﹣2或6;(3)平移GH到DM,連接HM,則GD∥HM,GD=HM,如圖3,四邊形BDHG的面積=△BHM的面積,當BH⊥HM時,△BHM的面積最大,其最大值=.【點睛】本題主要考查圖形與坐標及平移的性質(zhì),熟練掌握圖形與坐標及平移的性質(zhì)是解題的關鍵.8.已知AB//CD.(1)如圖1,E為AB,CD之間一點,連接BE,DE,得到∠BED.求證:∠BED=∠B+∠D;(2)如圖,連接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直線交于點F.①如圖2,當點B在點A的左側時,若∠ABC=50°,∠ADC=60°,求∠BFD的度數(shù).②如圖3,當點B在點A的右側時,設∠ABC=α,∠ADC=β,請你求出∠BFD的度數(shù).(用含有α,β的式子表示)解析:(1)見解析;(2)55°;(3)【分析】(1)根據(jù)平行線的判定定理與性質(zhì)定理解答即可;(2)①如圖2,過點作,當點在點的左側時,根據(jù),,根據(jù)平行線的性質(zhì)及角平分線的定義即可求的度數(shù);②如圖3,過點作,當點在點的右側時,,,根據(jù)平行線的性質(zhì)及角平分線的定義即可求出的度數(shù).【詳解】解:(1)如圖1,過點作,則有,,,,;(2)①如圖2,過點作,有.,...即,平分,平分,,,.答:的度數(shù)為;②如圖3,過點作,有.,,...即,平分,平分,,,.答:的度數(shù)為.【點睛】本題考查了平行線的判定與性質(zhì),解決本題的關鍵是熟練掌握平行線的判定與性質(zhì).9.已知:如圖,直線AB//CD,直線EF交AB,CD于P,Q兩點,點M,點N分別是直線CD,EF上一點(不與P,Q重合),連接PM,MN.(1)點M,N分別在射線QC,QF上(不與點Q重合),當∠APM+∠QMN=90°時,①試判斷PM與MN的位置關系,并說明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度數(shù).(提示:過N點作AB的平行線)(2)點M,N分別在直線CD,EF上時,請你在備用圖中畫出滿足PM⊥MN條件的圖形,并直接寫出此時∠APM與∠QMN的關系.(注:此題說理時不能使用沒有學過的定理)解析:(1)①PM⊥MN,理由見解析;②∠EPB的度數(shù)為125°;(2)∠APM+∠QMN=90°或∠APM-∠QMN=90°.【分析】(1)①利用平行線的性質(zhì)得到∠APM=∠PMQ,再根據(jù)已知條件可得到PM⊥MN;②過點N作NH∥CD,利用角平分線的定義以及平行線的性質(zhì)求得∠MNH=35°,即可求解;(2)分三種情況討論,利用平行線的性質(zhì)即可解決.【詳解】解:(1)①PM⊥MN,理由見解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ+∠QMN=90°,∴PM⊥MN;②過點N作NH∥CD,∵AB//CD,∴AB//NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA+∠MNH=90°,即∠ENH+∠MNH=90°,∴∠MNQ+∠MNH+∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ+∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度數(shù)為125°;(2)當點M,N分別在射線QC,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM=∠PMQ,∴∠APM+∠QMN=90°;當點M,N分別在射線QC,線段PQ上時,如圖:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ-∠QMN=90°,∴∠APM-∠QMN=90°;當點M,N分別在射線QD,QF上時,如圖:∵PM⊥MN,AB//CD,∴∠PMQ+∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM-∠QMN=90°;綜上,∠APM+∠QMN=90°或∠APM-∠QMN=90°.【點睛】本題主要考查了平行線的判定與性質(zhì),熟練掌握兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補;兩直線平行,同位角相等等知識是解題的關鍵.10.綜合與實踐背景閱讀:在同一平面內(nèi),兩條不重合的直線的位置關系有相交、平行,若兩條不重合的直線只有一個公共點,我們就說這兩條直線相交,若兩條直線不相交,我們就說這兩條直線互相平行兩條直線的位置關系的性質(zhì)和判定是幾何的重要知識,是初中階段幾何合情推理的基礎.已知:AM∥CN,點B為平面內(nèi)一點,AB⊥BC于B.問題解決:(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關系;(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;(3)如圖3,在(2)問的條件下,點E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,則∠EBC=.解析:(1);(2)見解析;(3)105°【分析】(1)通過平行線性質(zhì)和直角三角形內(nèi)角關系即可求解.(2)過點B作BG∥DM,根據(jù)平行線找角的聯(lián)系即可求解.(3)利用(2)的結論,結合角平分線性質(zhì)即可求解.【詳解】解:(1)如圖1,設AM與BC交于點O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠ABC=90°,∴∠A+∠AOB=90°,∠A+∠C=90°,故答案為:∠A+∠C=90°;(2)證明:如圖2,過點B作BG∥DM,∵BD⊥AM,∴DB⊥BG,∴∠DBG=90°,∴∠ABD+∠ABG=90°,∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,∴∠C=∠CBG,∴∠ABD=∠C;(3)如圖3,過點B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,設∠DBE=α,∠ABF=β,則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案為:105°.【點睛】本題考查平行線性質(zhì),畫輔助線,找到角的和差倍分關系是求解本題的關鍵.11.已知:AB∥CD,截線MN分別交AB、CD于點M、N.(1)如圖①,點B在線段MN上,設∠EBM=α°,∠DNM=β°,且滿足+(β﹣60)2=0,求∠BEM的度數(shù);(2)如圖②,在(1)的條件下,射線DF平分∠CDE,且交線段BE的延長線于點F;請寫出∠DEF與∠CDF之間的數(shù)量關系,并說明理由;(3)如圖③,當點P在射線NT上運動時,∠DCP與∠BMT的平分線交于點Q,則∠Q與∠CPM的比值為(直接寫出答案).解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由見解析;(3)【分析】(1)由非負性可求α,β的值,由平行線的性質(zhì)和外角性質(zhì)可求解;(2)過點E作直線EH∥AB,由角平分線的性質(zhì)和平行線的性質(zhì)可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的數(shù)量可求解;(3)由平行線的性質(zhì)和外角性質(zhì)可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.【詳解】解:(1)∵+(β﹣60)2=0,∴α=30,β=60,∵AB∥CD,∴∠AMN=∠MND=60°,∵∠AMN=∠B+∠BEM=60°,∴∠BEM=60°﹣30°=30°;(2)∠DEF+2∠CDF=150°.理由如下:過點E作直線EH∥AB,∵DF平分∠CDE,∴設∠CDF=∠EDF=x°;∵EH∥AB,∴∠DEH=∠EDC=2x°,∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;∴∠DEF=150°﹣2∠CDF,即∠DEF+2∠CDF=150°;(3)如圖3,設MQ與CD交于點E,∵MQ平分∠BMT,QC平分∠DCP,∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,∵AB∥CD,∴∠BME=∠MEC,∠BMP=∠PND,∵∠MEC=∠Q+∠DCQ,∴2∠MEC=2∠Q+2∠DCQ,∴∠PMB=2∠Q+∠PCD,∵∠PND=∠PCD+∠CPM=∠PMB,∴∠CPM=2∠Q,∴∠Q與∠CPM的比值為,故答案為:.【點睛】本題主要考查了平行線的性質(zhì)、角平分線的性質(zhì),準確計算是解題的關鍵.12.已知AB∥CD,線段EF分別與AB,CD相交于點E,F(xiàn).(1)請在橫線上填上合適的內(nèi)容,完成下面的解答:如圖1,當點P在線段EF上時,已知∠A=35°,∠C=62°,求∠APC的度數(shù);解:過點P作直線PH∥AB,所以∠A=∠APH,依據(jù)是;因為AB∥CD,PH∥AB,所以PH∥CD,依據(jù)是;所以∠C=(),所以∠APC=()+()=∠A+∠C=97°.(2)當點P,Q在線段EF上移動時(不包括E,F(xiàn)兩點):①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立嗎?請說明理由;②如圖3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,請直接寫出∠M,∠A與∠C的數(shù)量關系.解析:(1)兩直線平行,內(nèi)錯角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由見解答過程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根據(jù)平行線的判定與性質(zhì)即可完成填空;(2)結合(1)的輔助線方法即可完成證明;(3)結合(1)(2)的方法,根據(jù)∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可證明∠PMQ,∠A與∠C的數(shù)量關系.【詳解】解:過點P作直線PH∥AB,所以∠A=∠APH,依據(jù)是兩直線平行,內(nèi)錯角相等;因為AB∥CD,PH∥AB,所以PH∥CD,依據(jù)是平行于同一條直線的兩條直線平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案為:兩直線平行,內(nèi)錯角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:過點P作直線PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如圖3,過點P作直線PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【點睛】考核知識點:平行線的判定和性質(zhì).熟練運用平行線性質(zhì)和判定,添加適當輔助線是關鍵.13.已知,點在與之間.(1)圖1中,試說明:;(2)圖2中,的平分線與的平分線相交于點,請利用(1)的結論說明:.(3)圖3中,的平分線與的平分線相交于點,請直接寫出與之間的數(shù)量關系.解析:(1)說明過程請看解答;(2)說明過程請看解答;(3)∠BED=360°-2∠BFD.【分析】(1)圖1中,過點E作EG∥AB,則∠BEG=∠ABE,根據(jù)AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,進而可得∠BED=∠ABE+∠CDE;(2)圖2中,根據(jù)∠ABE的平分線與∠CDE的平分線相交于點F,結合(1)的結論即可說明:∠BED=2∠BFD;(3)圖3中,根據(jù)∠ABE的平分線與∠CDE的平分線相交于點F,過點E作EG∥AB,則∠BEG+∠ABE=180°,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再結合(1)的結論即可說明∠BED與∠BFD之間的數(shù)量關系.【詳解】解:(1)如圖1中,過點E作EG∥AB,則∠BEG=∠ABE,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)圖2中,因為BF平分∠ABE,所以∠ABE=2∠ABF,因為DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因為AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.圖3中,過點E作EG∥AB,則∠BEG+∠ABE=180°,因為AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因為BF平分∠ABE,所以∠ABE=2∠ABF,因為DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因為AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【點睛】本題考查了平行線的性質(zhì),解決本題的關鍵是掌握平行線的性質(zhì).14.如圖1,點在直線上,點在直線上,點在,之間,且滿足.(1)證明:;(2)如圖2,若,,點在線段上,連接,且,試判斷與的數(shù)量關系,并說明理由;(3)如圖3,若(為大于等于的整數(shù)),點在線段上,連接,若,則______.解析:(1)見解析;(2)見解析;(3)n-1【分析】(1)連接AB,根據(jù)已知證明∠MAB+∠SBA=180°,即可得證;(2)作CF∥ST,設∠CBT=α,表示出∠CAN,∠ACF,∠BCF,根據(jù)AD∥BC,得到∠DAC=120°,求出∠CAE即可得到結論;(3)作CF∥ST,設∠CBT=β,得到∠CBT=∠BCF=β,分別表示出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 汽車行業(yè):26年數(shù)據(jù)點評系列之一:乘用車25年復盤和26年展望:從“量穩(wěn)價緩”到“價升量穩(wěn)”
- 成人司法考試試卷及答案
- 恩施保安考試試題及答案
- 廣西柳州市2026年中考語文三模試卷附答案
- 2025-2026人教版一年級語文上學期測試
- 2026年四川省高中自主招生考試化學試卷試題(含答案詳解)
- 2025-2026一年級體育上學期測試卷
- 商鋪衛(wèi)生間管理制度
- 美發(fā)店門店衛(wèi)生制度
- 社區(qū)衛(wèi)生院五險一金制度
- 2026中俄數(shù)字經(jīng)濟研究中心(廈門市人工智能創(chuàng)新中心)多崗位招聘備考題庫及1套完整答案詳解
- 2026云南保山電力股份有限公司校園招聘50人筆試參考題庫及答案解析
- 《智能網(wǎng)聯(lián)汽車先進駕駛輔助技術》課件 項目1 先進駕駛輔助系統(tǒng)的認知
- 2024-2025學年北京清華附中高一(上)期末英語試卷(含答案)
- 引水壓力鋼管制造及安裝工程監(jiān)理實施細則
- 2025年全行業(yè)薪酬報告
- 輔助生殖項目五年發(fā)展計劃
- (2025年)qc培訓考試試題(含答案)
- DBJ50-T-271-2017 城市軌道交通結構檢測監(jiān)測技術標準
- 2025河南中原再擔保集團股份有限公司社會招聘9人考試參考題庫及答案解析
- 中醫(yī)醫(yī)院等級評審材料準備全攻略
評論
0/150
提交評論