版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年黑龍江省哈爾濱市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.設(shè)函數(shù)y=(2+x)3,則y'=
A.(2+x)2
B.3(2+x)2
C.(2+x)4
D.3(2+x)4
2.
3.
A.
B.
C.
D.
4.
5.
6.
7.A.A.
B.
C.
D.
8.
9.
10.當(dāng)x→0時(shí),x是ln(1+x2)的
A.高階無(wú)窮小B.同階但不等價(jià)無(wú)窮小C.等價(jià)無(wú)窮小D.低階無(wú)窮小
11.A.-2(1-x2)2+C
B.2(1-x2)2+C
C.
D.
12.A.A.1/4B.1/2C.1D.2
13.
14.設(shè)y=x-5,則dy=().A.A.-5dxB.-dxC.dxD.(x-1)dx
15.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
16.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C
17.
18.
19.
20.
二、填空題(20題)21.
22.y'=x的通解為______.23.設(shè)z=ln(x2+y),則dz=______.
24.
25.y=ln(1+x2)的單調(diào)增加區(qū)間為______.
26.
27.
28.
29.
30.
31.32.33.
34.35.函數(shù)y=x3-2x+1在區(qū)間[1,2]上的最小值為______.
36.曲線y=2x2-x+1在點(diǎn)(1,2)處的切線方程為__________。
37.38.
39.
40.三、計(jì)算題(20題)41.
42.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
43.
44.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.45.將f(x)=e-2X展開為x的冪級(jí)數(shù).
46.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
47.
48.49.50.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.51.求曲線在點(diǎn)(1,3)處的切線方程.52.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.53.證明:54.求微分方程的通解.
55.求微分方程y"-4y'+4y=e-2x的通解.
56.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則57.
58.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).59.60.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
四、解答題(10題)61.62.將展開為x的冪級(jí)數(shù).
63.
64.設(shè)z=xsiny,求dz。
65.求曲線的漸近線.
66.將周長(zhǎng)為12的矩形繞其一邊旋轉(zhuǎn)得一圓柱體,問(wèn)繞邊長(zhǎng)為多少的邊旋轉(zhuǎn)才能使圓柱體的體積最大?
67.
68.設(shè)
69.(本題滿分10分)
70.五、高等數(shù)學(xué)(0題)71.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
六、解答題(0題)72.求由曲線xy=1及直線y=x,y=2所圍圖形的面積A。
參考答案
1.B本題考查了復(fù)合函數(shù)求導(dǎo)的知識(shí)點(diǎn)。因?yàn)閥=(2+x)3,所以y'=3(2+x)2·(2+x)'=3(2+x)2.
2.C
3.B
4.A
5.C
6.C
7.B本題考查的知識(shí)點(diǎn)為定積分運(yùn)算.
因此選B.
8.D
9.C
10.D解析:
11.C
12.C
13.B
14.C本題考查的知識(shí)點(diǎn)為微分運(yùn)算.
因此選C.
15.C
16.C
17.D
18.D
19.B
20.D解析:
21.
22.本題考查的知識(shí)點(diǎn)為:求解可分離變量的微分方程.
由于y'=x,可知
23.本題考查的知識(shí)點(diǎn)為求二元函數(shù)的全微分.
通常求二元函數(shù)的全微分的思路為:
先求出如果兩個(gè)偏導(dǎo)數(shù)為連續(xù)函數(shù),則可得知
由題設(shè)z=ln(x2+y),令u=x2+y,可得
當(dāng)X2+y≠0時(shí),為連續(xù)函數(shù),因此有
24.225.(0,+∞)本題考查的知識(shí)點(diǎn)為利用導(dǎo)數(shù)符號(hào)判定函數(shù)的單調(diào)性.
由于y=ln(1+x2),其定義域?yàn)?-∞,+∞).
又由于,令y'=0得唯一駐點(diǎn)x=0.
當(dāng)x>0時(shí),總有y'>0,從而y單調(diào)增加.
可知y=ln(1+x2)的單調(diào)增加區(qū)間為(0,+∞).
26.(e-1)2
27.
本題考查的知識(shí)點(diǎn)為連續(xù)性與極限的關(guān)系,左極限、右極限與極限的關(guān)系.
28.0
29.230.1;本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的計(jì)算.
31.0
32.本題考查了函數(shù)的一階導(dǎo)數(shù)的知識(shí)點(diǎn)。33.1本題考查的知識(shí)點(diǎn)為定積分的換元積分法.
34.
35.0本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最小值問(wèn)題.
通常求解的思路為:
先求出連續(xù)函數(shù)f(x)在(a,b)內(nèi)的所有駐點(diǎn)x1,…,xk.
比較f(x1),f(x2),…,f(xk),f(a),f(b),其中最大(小)值即為f(x)在[a,b]上的最大(小)值,相應(yīng)的x即為,(x)在[a,b]上的最大(小)值點(diǎn).
由y=x3-2x+1,可得
Y'=3x2-2.
令y'=0得y的駐點(diǎn)為,所給駐點(diǎn)皆不在區(qū)間(1,2)內(nèi),且當(dāng)x∈(1,2)時(shí)有
Y'=3x2-2>0.
可知y=x3-2x+1在[1,2]上為單調(diào)增加函數(shù),最小值點(diǎn)為x=1,最小值為f(1)=0.
注:也可以比較f(1),f(2)直接得出其中最小者,即為f(x)在[1,2]上的最小值.
本題中常見的錯(cuò)誤是,得到駐點(diǎn)和之后,不討論它們是否在區(qū)間(1,2)內(nèi).而是錯(cuò)誤地比較
從中確定f(x)在[1,2]上的最小值.則會(huì)得到錯(cuò)誤結(jié)論.
36.y-2=3(x-1)(或?qū)憺閥=3x-1)y-2=3(x-1)(或?qū)憺閥=3x-1)37.
38.1/z本題考查了二元函數(shù)的二階偏導(dǎo)數(shù)的知識(shí)點(diǎn)。
39.1/3
40.4π41.由一階線性微分方程通解公式有
42.
43.
44.
45.
46.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
47.
48.
49.
50.函數(shù)的定義域?yàn)?/p>
注意
51.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
52.由二重積分物理意義知
53.
54.
55.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
56.由等價(jià)無(wú)窮小量的定義可知
57.
則
58.
列表:
說(shuō)明
59.
60.
61.
62.
;本題考查的知識(shí)點(diǎn)為將初等函數(shù)展開為x的冪級(jí)數(shù).
如果題目中沒有限定展開方法,一律要利用間接展開法.這要求考生記住幾個(gè)標(biāo)準(zhǔn)展開式:,ex,sinx,cosx,ln(1+x)對(duì)于x的冪級(jí)數(shù)展開式.
63.
64.65.由于
可知y=0為所給曲線的水平漸近線.由于
,可知x=2為所給曲線的鉛直漸近線.本題考查的知識(shí)點(diǎn)為求曲線的漸近線.
注意漸近線的定義,只需分別研究水平漸近線與鉛直漸近線:
若,則直線y=c為曲線y=f(x)的水平漸近線;
若,則直線x=x0為曲線y=f(x)的鉛直漸近線.
有些特殊情形還需研究單邊極限.
本題中考生出現(xiàn)的較多的錯(cuò)誤是忘掉了鉛直漸近線.
66.
67.
68.
69.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年及未來(lái)5年市場(chǎng)數(shù)據(jù)中國(guó)漢堡包行業(yè)市場(chǎng)需求預(yù)測(cè)及投資規(guī)劃建議報(bào)告
- 2025年大學(xué)國(guó)際商務(wù)(國(guó)際商務(wù)談判)試題及答案
- 2026年藥品管理(藥品驗(yàn)收流程)試題及答案
- 2025年中職(物流配送專業(yè))快遞配送試題及答案
- 2025年大學(xué)大二(植物生理學(xué))植物生長(zhǎng)發(fā)育調(diào)控技術(shù)綜合測(cè)試題及答案
- 2025年大學(xué)教育學(xué)(教育管理學(xué)基礎(chǔ))試題及答案
- 2025年高職(商務(wù)談判與溝通)溝通技巧階段測(cè)試題及答案
- 2025年大學(xué)通識(shí)選修(傳媒文化)試題及答案
- 2026年電梯維保(電梯故障排除)試題及答案
- 2025年中職傳感器技術(shù)(技術(shù)應(yīng)用)試題及答案
- 國(guó)家安全生產(chǎn)十五五規(guī)劃
- 河南省2025年普通高等學(xué)校對(duì)口招收中等職業(yè)學(xué)校畢業(yè)生考試語(yǔ)文試題 答案
- 實(shí)驗(yàn)室生物安全培訓(xùn)-課件
- 第章交流穩(wěn)態(tài)電路
- 馬口鐵印鐵制罐工藝流程詳解課件
- 預(yù)應(yīng)力管樁-試樁施工方案
- GB/T 16938-2008緊固件螺栓、螺釘、螺柱和螺母通用技術(shù)條件
- FZ/T 82006-2018機(jī)織配飾品
- 《食品包裝學(xué)(第三版)》教學(xué)PPT課件整套電子講義
- 全尺寸測(cè)量報(bào)告FAI
- 新教材教科版五年級(jí)上冊(cè)科學(xué)全冊(cè)課時(shí)練(課后作業(yè)設(shè)計(jì))
評(píng)論
0/150
提交評(píng)論