版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
黑龍江省哈爾濱市第八十三中學(xué)高三數(shù)學(xué)理下學(xué)期期末試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項(xiàng)中,只有是一個符合題目要求的1.函數(shù)的單調(diào)遞增區(qū)是
(
)
A.
B.
C.和
D.參考答案:D略2.市內(nèi)某公共汽車站6個候車位(成一排),現(xiàn)有3名乘客隨便坐在某個座位上候車,則恰好有2個連續(xù)空座位的候車方式的種數(shù)是 A.48 B.54 C.72 D.84參考答案:C
根據(jù)題意,先把3名乘客進(jìn)行全排列,有種排法,排好后,有4個空位,再將1個空位和余下的2個連續(xù)的空位插入4個空位中,有種排法,則共有種候車方式,選 C.3.下列三個命題:①在區(qū)間內(nèi)任取兩個實(shí)數(shù),則事件“成立”的概率是;②函數(shù)關(guān)于(3,0)點(diǎn)對稱,滿足,且當(dāng)時函數(shù)為增函數(shù),則在上為減函數(shù);③滿足,,的有兩解。其中正確命題的個數(shù)為(
)A.1
B.2
C.3
D.
0
參考答案:C略4.函數(shù)的圖象大致為(
)A.
B.
C.
D.參考答案:D5.設(shè),則“”是“”的(
▲
)A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要參考答案:B略6.已知雙曲線﹣=1(a>0,b>0)的左、右焦點(diǎn)分別是F1,F(xiàn)2,過F2的直線交雙曲線的右支于P,Q兩點(diǎn),若|PF1|=|F1F2|,且3|PF2|=2|QF2|,則該雙曲線的離心率為()A. B. C.2 D.參考答案:A【考點(diǎn)】雙曲線的簡單性質(zhì).【專題】圓錐曲線的定義、性質(zhì)與方程.【分析】先作出圖形,并作出雙曲線的右準(zhǔn)線l,設(shè)P到l的距離為d,根據(jù)雙曲線的第二定義即可求出Q到l的距離為.過Q作l的垂線QQ1,而過P作QQ1的垂線PM,交x軸于N,在△PMQ中有,這樣即可求得d=,根據(jù)已知條件及雙曲線的定義可以求出|PF2|=2c﹣2a,所以根據(jù)雙曲線的第二定義即可得到,進(jìn)一步可整理成,這樣解關(guān)于的方程即可.【解答】解:如圖,l為該雙曲線的右準(zhǔn)線,設(shè)P到右準(zhǔn)線的距離為d;過P作PP1⊥l,QQ1⊥l,分別交l于P1,Q1;∵,3|PF2|=2|QF2|;∴,;過P作PM⊥QQ1,垂直為M,交x軸于N,則:;∴解得d=;∵根據(jù)雙曲線的定義,|PF1|﹣|PF2|=2a,∴|PF2|=2c﹣2a;∴根據(jù)雙曲線的第二定義,;整理成:;∴解得(舍去);即該雙曲線的離心率為.故選A.【點(diǎn)評】考查雙曲線的第二定義,雙曲線的準(zhǔn)線方程,雙曲線的焦距、焦點(diǎn)的概念,以及對雙曲線的定義的運(yùn)用,雙曲線的離心率的概念,相似三角形的比例關(guān)系.7.如圖,正方體ABCD-A1B1C1D1中,點(diǎn)E,F(xiàn)分別是AB,AD的中點(diǎn),O為正方形ABCD的中心,則(
)A.直線EF,AO是異面直線 B.直線EF,BB1是相交直線C.直線EF與BC1所成的角為30° D.直線EF,BB1所成角的余弦值為參考答案:C【分析】按共面不共面判斷、,由異面直線所成角定義計(jì)算角判斷、?!驹斀狻俊邽檎叫蔚闹行?,是中點(diǎn),∴,即,共線,從而共線,A錯;平面,平面,,平面,∴是異面直線,B錯;又是中點(diǎn),可得且,是平行四邊形,則,是異面直線與所成的角,設(shè)正方體棱長為1,中,,,,,。C正確,同理得是,所成的角,在中求得。D錯。故選:C。【點(diǎn)睛】本題考查異面直線的判斷,考查求異面直線所成的角,解題方法可根據(jù)異面直線的判斷定理證明,求異面直線所成的角可根據(jù)定義作出這個角,然后解三角形得結(jié)論。8.已知為單位向量,且與垂直,則的夾角為()A.30° B.60° C.120° D.150°參考答案:C【考點(diǎn)】9S:數(shù)量積表示兩個向量的夾角.【分析】根據(jù)平面向量的數(shù)量積與夾角公式,即可求出對應(yīng)的結(jié)果.【解答】解:設(shè)與的夾角為θ,由為單位向量,且與垂直,則?(+2)=+2?=12+2×1×1×cosθ=0,解得cosθ=﹣;又θ∈[0°,120°],的夾角為θ=120°.故選:C.9.已知函數(shù)的周期是,將函數(shù)的圖象沿軸向右平移個單位,得到函數(shù)的圖象,則函數(shù)(
)
A.
B.
C.
D.參考答案:B10.已知、是平面,、是直線,給出下列命題①若,,則.
②如果、n是異面直線,那么不與相交.③若,∥,且,則∥且∥.其中真命題的個數(shù)是A、0
B、3
C、2
D、1參考答案:答案:C二、填空題:本大題共7小題,每小題4分,共28分11.已知函數(shù)f(x)=|x?1|+1和g(x)=(a>0),若對任意x1∈,存在x2∈使得g(x2)≥f(x1),則實(shí)數(shù)a的取值范圍為____________參考答案:
考點(diǎn):1.函數(shù)與不等式;2.導(dǎo)數(shù)與函數(shù)的單調(diào)性.12.在實(shí)數(shù)集中定義一種運(yùn)算“”,對任意,為唯一確定的實(shí)數(shù),且具有性質(zhì):(Ⅰ)對任意,;(Ⅱ)對任意,.關(guān)于函數(shù)的性質(zhì),有如下說法:①函數(shù)的最小值為;②函數(shù)為偶函數(shù);③函數(shù)的單調(diào)遞增區(qū)間為.其中所有正確說法的序號為
.參考答案:①②13.若關(guān)于x的不等式的解集為空集,則實(shí)數(shù)a的取值范圍是
。參考答案:略14.函數(shù)的值域是 .參考答案:{﹣1,3}【考點(diǎn)】三角函數(shù)值的符號;函數(shù)的值域.【專題】計(jì)算題.【分析】本題需要對于角所在的象限討論,確定符號,對于四個象限,因?yàn)槿呛瘮?shù)值的符號不同,需要按照四種不同的情況進(jìn)行討論,得到結(jié)果.【解答】解:由題意知本題需要對于角所在的象限討論,確定符號,當(dāng)角x在第一象限時,y=1+1+1=3,當(dāng)角在第二象限時,y=1﹣1﹣1=﹣1,當(dāng)角在第三象限時,y=﹣1﹣1+1=﹣1,當(dāng)角在第四象限時,y=﹣1+1﹣1=﹣1.故答案為:{﹣1,3}【點(diǎn)評】本題考查三角函數(shù)值的符號,考查函數(shù)的值域,本題是一個比較簡單的綜合題目,這種題目若出現(xiàn)是一個送分題目.15.已知三棱柱的側(cè)棱垂直底面,所有頂點(diǎn)都在球面上,AC=1,,則球的表面積為___________.參考答案:8略16.若命題“”是假命題,則實(shí)數(shù)的取值范圍是
▲
.參考答案:略17.已知向量a=(2cosα,2sinα),b=(2cosβ,2sinβ),且直線2xcosα-2ysinα+1=0與圓(x-cosβ)2+(y+sinβ)2=1相切,則向量a與b的夾角為______.參考答案:略三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.(本小題滿分14分)
已知函數(shù)在點(diǎn)處的切線為.
(1)求實(shí)數(shù),的值;
(2)是否存在實(shí)數(shù),當(dāng)時,函數(shù)的最小值為,若存在,求出的取值范圍;若不存在,說明理由;(3)若,求證:.參考答案:(1);(2)存在,的取值范圍為;(3)證明見解析.試題分析:(1)求導(dǎo),進(jìn)而可得,即可解出,的值;(2)先對函數(shù)求導(dǎo),再對的值進(jìn)行分類討論,即可得的取值范圍;(3)結(jié)合(2),可證,進(jìn)而可證,即可證.試題解析:(1)解:∵,其定義域?yàn)?,?
…………1分依題意可得
…………2分解得.
…………4分(2)解:,∴.
…………5分①當(dāng)時,,則在上單調(diào)遞減,∴.
…………6分②當(dāng)時,,則在上單調(diào)遞減,∴.
…………7分③當(dāng)時,則時,;時,,∴在上單調(diào)遞減,在上單調(diào)遞增.故當(dāng)時,的最小值為.∵.
∴.
…………8分綜上所述,存在滿足題意,其取值范圍為.
…………9分(3)證法1:由(2)知,當(dāng)時,在上單調(diào)遞減,∴時,,即.
…………10分∵,∴.
…………11分∴.
…………12分∴.
…………13分∵,∴.
…………14分證法2:設(shè),則.當(dāng),,
…………10分∴在上單調(diào)遞減∴.
…………11分∴時,.
…………12分,∴.
…………13分,∴.
…………14分考點(diǎn):1、利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值;2、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;3、利用導(dǎo)數(shù)證明不等式.19.某造紙廠擬建一座平面圖形為矩形且面積為162平方米的三級污水處理池,池的深度一定(平面圖如圖所示),如果池四周圍墻建造單價(jià)為400元/米,中間兩道隔墻建造單價(jià)為248元/米,池底建造單價(jià)為每平方米,水池所有墻的厚度忽略不計(jì).(1)試設(shè)計(jì)污水處理池的長和寬,使總造價(jià)最低,并求出最低總造價(jià);(2)若由于地形限制,該池的長和寬都不能超過16米,試設(shè)計(jì)污水池的長和寬,使總造價(jià)最低.參考答案:(1)設(shè)污水處理池的寬為米,則長為米.則總造價(jià)f(x)=400×()+248×2x+80×162
=1296x++12960=1296()+12960≥1296×2+12960=38880(元),
當(dāng)且僅當(dāng)x=(x>0),即x=10時取等號.
∴當(dāng)長為16.2米,寬為10米時總造價(jià)最低,最低總造價(jià)為38880元.(2)由限制條件知,∴
設(shè)g(x)=().g(x)在上是增函數(shù),∴當(dāng)x=10時(此時=16),g(x)有最小值,即f(x)有最小值.∴當(dāng)長為16米,寬為10米時,總造價(jià)最低.略20.(本小題滿分16分)已知函數(shù).(Ⅰ)若在上的最大值為,求實(shí)數(shù)的值;(Ⅱ)若對任意,都有恒成立,求實(shí)數(shù)的取值范圍;(Ⅲ)在(Ⅰ)的條件下,設(shè),對任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn),使得是以(為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?請說明理由.參考答案:解:(Ⅰ)由,得,令,得或.
2分列表如下:0
00極小值極大值由,,∴,即最大值為,∴.
4分(Ⅱ)由,得.,且等號不能同時取,∴,∴恒成立,即.
6分令,求導(dǎo)得,,當(dāng)時,,從而,∴在上為增函數(shù),∴,∴.
8分(Ⅲ)由條件,,假設(shè)曲線上存在兩點(diǎn)滿足題意,則只能在軸兩側(cè),不妨設(shè),則,且.是以(為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,∴,∴
,是否存在等價(jià)于方程在且時是否有解.
10分①若時,方程為,化簡得,此方程無解;
12分②若時,方程為,即,設(shè),則,顯然,當(dāng)時,,即在上為增函數(shù),∴的值域?yàn)?,即,∴?dāng)時,方程總有解.∴對任意給定的正實(shí)數(shù),曲線
上總存在兩點(diǎn),使得是以(為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上.
16分21.已知a為實(shí)數(shù),數(shù)列滿足,當(dāng)時,.(1)當(dāng)時,填寫下列表格;n2351200an
(2)當(dāng)時,求數(shù)列的前200項(xiàng)的和;(3)令,,求證:當(dāng)時,有.參考答案:(1)(4分)n2351200an19619214
(2)當(dāng)時,由題意知數(shù)列的前50項(xiàng)構(gòu)成首項(xiàng)為,公差為的等差數(shù)列,從第51項(xiàng)開始,奇數(shù)項(xiàng)均為1,偶數(shù)項(xiàng)均為4.(6分)從而,∴.(8分)(3)當(dāng)時,易知,∴(10分)①當(dāng)(k∈N*)時,∵,∴,(12分)②當(dāng)(k∈N*)時,綜上,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 湖南省株洲市2026屆高三上學(xué)期教學(xué)質(zhì)量統(tǒng)一檢測(一模)英語試卷(含答案無聽力音頻及聽力原文)
- 廣東省深圳市福田區(qū)2025-2026學(xué)年九年級上學(xué)期1月期末考試化學(xué)試卷(含答案)
- 2025-2026學(xué)年內(nèi)蒙古呼和浩特市八年級(上)期末數(shù)學(xué)試卷(含答案)
- 四川省達(dá)州市渠縣第二中學(xué)2025-2026學(xué)年八年級上學(xué)期1月月考數(shù)學(xué)試題(無答案)
- 化工企業(yè)班組級培訓(xùn)課件
- 11月債市回顧及12月展望:關(guān)注重磅會議把握1.85配置價(jià)值
- 飛機(jī)連接技術(shù)鉚接
- 2026天津商業(yè)大學(xué)第一批招聘20人 (高層次人才崗位)筆試備考試題及答案解析
- 2026福建南平市建陽區(qū)緊缺急需學(xué)科教師專項(xiàng)招聘16人參考考試題庫及答案解析
- 2026江蘇省數(shù)據(jù)集團(tuán)數(shù)字科技有限公司招聘筆試備考試題及答案解析
- 2026年上海市初三語文一模試題匯編之古詩文閱讀(學(xué)生版)
- 2026北京西城初三上學(xué)期期末語文試卷和答案
- 2025河北邢臺市人民醫(yī)院招聘編外工作人員41人備考題庫完整答案詳解
- 2026中國市場主流人力資源創(chuàng)新產(chǎn)品、解決方案集錦與速查手冊
- 《盾構(gòu)構(gòu)造與操作維護(hù)》課件-項(xiàng)目1 盾構(gòu)機(jī)構(gòu)造與選型認(rèn)知
- 2025年度手術(shù)室護(hù)士長工作總結(jié)匯報(bào)
- 統(tǒng)編版(2024)八年級上冊道德與法治期末復(fù)習(xí)每課必背學(xué)考點(diǎn)匯編
- 2025至2030實(shí)驗(yàn)室能力驗(yàn)證行業(yè)調(diào)研及市場前景預(yù)測評估報(bào)告
- 紗窗生產(chǎn)合同范本
- 甲流患兒的護(hù)理
- 餐飲顧客摔倒賠償協(xié)議書
評論
0/150
提交評論